Package

ai.chronon

spark

Permalink

package spark

Visibility
  1. Public
  2. All

Type Members

  1. class Analyzer extends AnyRef

    Permalink
  2. class Args extends ScallopConf

    Permalink
  3. class ChrononKryoRegistrator extends KryoRegistrator

    Permalink
  4. class CpcSketchKryoSerializer extends Serializer[CpcSketch]

    Permalink
  5. sealed trait DataRange extends AnyRef

    Permalink
  6. class DummyExtensions extends (SparkSessionExtensions) ⇒ Unit

    Permalink
  7. class GroupBy extends Serializable

    Permalink
  8. class GroupByUpload extends Serializable

    Permalink
  9. sealed case class IncompatibleSchemaException(inconsistencies: Seq[(String, DataType, DataType)]) extends Exception with Product with Serializable

    Permalink
  10. class ItemSketchSerializable extends Serializable

    Permalink
  11. class ItemsSketchKryoSerializer extends Serializer[ItemSketchSerializable]

    Permalink
  12. class Join extends AnyRef

    Permalink
  13. case class KeyWithHash(data: Array[Any], hash: Array[Byte], hashInt: Int) extends Serializable with Product

    Permalink
  14. case class KvRdd(data: RDD[(Array[Any], Array[Any])], keySchema: StructType, valueSchema: StructType)(implicit sparkSession: SparkSession) extends Product with Serializable

    Permalink
  15. class LogFlattenerJob extends Serializable

    Permalink

    Purpose of LogFlattenerJob is to unpack serialized Avro data from online requests and flatten each field (both keys and values) into individual columns and save to an offline "flattened" log table.

    Purpose of LogFlattenerJob is to unpack serialized Avro data from online requests and flatten each field (both keys and values) into individual columns and save to an offline "flattened" log table.

    Steps: 1. determine unfilled range and pull raw logs from partitioned log table 2. fetch joinCodecs for all unique schema_hash present in the logs 3. build a merged schema from all schema versions, which will be used as output schema 4. unpack each row and adhere to the output schema 5. save the schema info in the flattened log table properties (cumulatively)

  16. case class PartitionRange(start: String, end: String) extends DataRange with Product with Serializable

    Permalink
  17. class RowWrapper extends Row

    Permalink
  18. class StagingQuery extends AnyRef

    Permalink
  19. case class TableUtils(sparkSession: SparkSession) extends Product with Serializable

    Permalink
  20. case class TimeRange(start: Long, end: Long) extends DataRange with Product with Serializable

    Permalink

Value Members

  1. object Comparison

    Permalink
  2. object Conversions

    Permalink
  3. object Driver

    Permalink
  4. object Extensions

    Permalink
  5. object FastHashing

    Permalink
  6. object GenericRowHandler

    Permalink
  7. object GroupBy extends Serializable

    Permalink
  8. object GroupByUpload extends Serializable

    Permalink
  9. object LogFlattenerJob extends Serializable

    Permalink
  10. object LogUtils

    Permalink
  11. object MetadataExporter

    Permalink
  12. object SparkSessionBuilder

    Permalink
  13. object StagingQuery

    Permalink
  14. package consistency

    Permalink
  15. package stats

    Permalink
  16. package streaming

    Permalink

Ungrouped