com.cra.figaro.algorithm.learning

OnlineExpectationMaximization

Related Doc: package learning

trait OnlineExpectationMaximization extends Online with ExpectationMaximization

An EM algorithm which learns parameters incrementally

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. OnlineExpectationMaximization
  2. ExpectationMaximization
  3. ParameterLearner
  4. Online
  5. Algorithm
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def doExpectationStep(): Map[Parameter[_], Seq[Double]]

    Attributes
    protected
    Definition Classes
    ExpectationMaximization
  2. abstract val initial: Universe

    Definition Classes
    OnlineExpectationMaximizationOnline
  3. abstract val targetParameters: Seq[Parameter[_]]

    Definition Classes
    ExpectationMaximization
  4. abstract val terminationCriteria: () ⇒ EMTerminationCriteria

    Definition Classes
    ExpectationMaximization
  5. abstract val transition: () ⇒ Universe

    Definition Classes
    OnlineExpectationMaximizationOnline

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. var active: Boolean

    Attributes
    protected
    Definition Classes
    Algorithm
  5. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  6. def cleanUp(): Unit

    Called when the algorithm is killed.

    Called when the algorithm is killed. By default, does nothing. Can be overridden.

    Definition Classes
    Algorithm
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. var currentUniverse: Universe

    Attributes
    protected
  9. var debug: Boolean

    Definition Classes
    ExpectationMaximization
  10. def doKill(): Unit

    Attributes
    protected[com.cra.figaro.algorithm]
    Definition Classes
    ExpectationMaximizationAlgorithm
  11. def doMaximizationStep(parameterMapping: Map[Parameter[_], Seq[Double]]): Unit

    Attributes
    protected
    Definition Classes
    ExpectationMaximization
  12. def doResume(): Unit

    Attributes
    protected[com.cra.figaro.algorithm]
    Definition Classes
    ExpectationMaximizationAlgorithm
  13. def doStart(): Unit

  14. def doStop(): Unit

    Attributes
    protected[com.cra.figaro.algorithm]
    Definition Classes
    ExpectationMaximizationAlgorithm
  15. def em(): Unit

    Attributes
    protected
    Definition Classes
    ExpectationMaximization
  16. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  18. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  19. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  20. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  21. def initialize(): Unit

    Called when the algorithm is started before running any steps.

    Called when the algorithm is started before running any steps. By default, does nothing. Can be overridden.

    Definition Classes
    Algorithm
  22. def isActive: Boolean

    Definition Classes
    Algorithm
  23. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  24. def iteration(): Unit

    Definition Classes
    ExpectationMaximization
  25. def kill(): Unit

    Kill the algorithm so that it is inactive.

    Kill the algorithm so that it is inactive. It will no longer be able to provide answers.Throws AlgorithmInactiveException if the algorithm is not active.

    Definition Classes
    Algorithm
  26. var lastIterationStatistics: Map[Parameter[_], Seq[Double]]

    Attributes
    protected
  27. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  28. final def notify(): Unit

    Definition Classes
    AnyRef
  29. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  30. val paramMap: Map[Parameter[_], Seq[Double]]

    Attributes
    protected
    Definition Classes
    ExpectationMaximization
  31. def resume(): Unit

    Resume the computation of the algorithm, if it has been stopped.

    Resume the computation of the algorithm, if it has been stopped. Throws AlgorithmInactiveException if the algorithm is not active.

    Definition Classes
    Algorithm
  32. def start(): Unit

    Start the algorithm and make it active.

    Start the algorithm and make it active. After it returns, the algorithm must be ready to provide answers. Throws AlgorithmActiveException if the algorithm is already active.

    Definition Classes
    Algorithm
  33. def stop(): Unit

    Stop the algorithm from computing.

    Stop the algorithm from computing. The algorithm is still ready to provide answers after it returns. Throws AlgorithmInactiveException if the algorithm is not active.

    Definition Classes
    Algorithm
  34. var sufficientStatistics: Map[Parameter[_], Seq[Double]]

    Definition Classes
    ExpectationMaximization
  35. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  36. def toString(): String

    Definition Classes
    AnyRef → Any
  37. def update(evidence: Seq[NamedEvidence[_]] = Seq()): Unit

    Observe new evidence and perform one expectation step and one maximization step

    Observe new evidence and perform one expectation step and one maximization step

    Definition Classes
    OnlineExpectationMaximizationOnline
  38. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from ExpectationMaximization

Inherited from ParameterLearner

Inherited from Online

Inherited from Algorithm

Inherited from AnyRef

Inherited from Any

Ungrouped