com.github.cloudml.zen.ml.clustering

LDA

abstract class LDA extends Serializable with Logging

Linear Supertypes
Logging, Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LDA
  2. Logging
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def sampleTokens(graph: Graph[VD, ED], totalTopicCounter: DenseVector[Count], innerIter: Long, numTokens: Double, numTopics: Double, numTerms: Double, alpha: Double, alphaAS: Double, beta: Double): Graph[VD, ED]

    Attributes
    protected

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def getCorpus: Graph[VD, ED]

  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  16. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  24. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  28. def mergeDuplicateTopic(threshold: Double = 0.95D): Map[Int, Int]

  29. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  30. final def notify(): Unit

    Definition Classes
    AnyRef
  31. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  32. val numDocs: Long

    Doc number in corpus

  33. val numTokens: Long

    Token number in corpus

  34. def perplexity(): Double

    the multiplcation between word distribution among all topics and the corresponding doc distribution among all topics: p(w)=\sum_{k}{p(k|d)*p(w|k)}= \sum_{k}{\frac{{n}_{kw}+{\beta }_{w}} {{n}_{k}+\bar{\beta }} \frac{{n}_{kd}+{\alpha }_{k}}{\sum{{n}_{k}}+ \bar{\alpha }}}

    the multiplcation between word distribution among all topics and the corresponding doc distribution among all topics: p(w)=\sum_{k}{p(k|d)*p(w|k)}= \sum_{k}{\frac{{n}_{kw}+{\beta }_{w}} {{n}_{k}+\bar{\beta }} \frac{{n}_{kd}+{\alpha }_{k}}{\sum{{n}_{k}}+ \bar{\alpha }}}

    \sum_{k} \frac{{\alpha }_{k}{\beta }_{w} + {n}_{kw}{\alpha }_{k} + {n}_{kd}{\beta }_{w} + {n}_{kw}{n}_{kd}} {{n}_{k}+\bar{\beta }} \frac{1}{\sum{{n}_{k}}+\bar{\alpha }}} \exp^{-(\sum{\log(p(w))})/N} N is the number of tokens in corpus

    \bar{\alpha }}} \sum_{k} \frac{{\alpha }_{k}{\beta }_{w} + {n}_{kw}{\alpha }_{k} + {n}_{kd}{\beta }_{w} + {n}_{kw}{n}_{kd}} {{n}_{k}+\bar{\beta }} \frac{1}{\sum{{n}_{k}}+\bar{\alpha }}} \exp^{-(\sum{\log(p(w))})/N} N is the number of tokens in corpus

  35. def runGibbsSampling(iterations: Int): Unit

  36. def saveModel(totalIter: Int = 1): DistributedLDAModel

  37. def setAlpha(alpha: Double): LDA.this.type

  38. def setAlphaAS(alphaAS: Double): LDA.this.type

  39. def setBeta(beta: Double): LDA.this.type

  40. def setSeed(newSeed: Int): LDA.this.type

  41. def setStorageLevel(newStorageLevel: StorageLevel): LDA.this.type

  42. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  43. def toString(): String

    Definition Classes
    AnyRef → Any
  44. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  45. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped