com.github.cloudml.zen.ml.neuralNetwork

NNUtil

object NNUtil

Annotations
@Experimental()
Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. NNUtil
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def crossEntropy(out: Matrix[Double], label: Matrix[Double]): Double

  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. def initGaussianDistWeight(weight: DenseMatrix[Double], scale: Double): DenseMatrix[Double]

  15. def initGaussianDistWeight(numIn: Int, numOut: Int, scale: Double): DenseMatrix[Double]

  16. def initGaussianDistWeight(numIn: Int, numOut: Int): DenseMatrix[Double]

  17. def initUniformDistWeight(w: DenseMatrix[Double], low: Double, high: Double): DenseMatrix[Double]

  18. def initUniformDistWeight(numIn: Int, numOut: Int, low: Double, high: Double): DenseMatrix[Double]

  19. def initUniformDistWeight(w: DenseMatrix[Double], scale: Double): DenseMatrix[Double]

  20. def initUniformDistWeight(numIn: Int, numOut: Int, scale: Double): DenseMatrix[Double]

  21. def initUniformDistWeight(numIn: Int, numOut: Int): DenseMatrix[Double]

  22. def initializeBias(numOut: Int): DenseVector[Double]

  23. def initializeWeight(w: DenseMatrix[Double], rand: () ⇒ Double): DenseMatrix[Double]

  24. def initializeWeight(numIn: Int, numOut: Int, rand: () ⇒ Double): DenseMatrix[Double]

  25. def initializeWeight(numIn: Int, numOut: Int): DenseMatrix[Double]

  26. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  27. def meanSquaredError(out: Matrix[Double], label: Matrix[Double]): Double

  28. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  31. def scalarExp(x: Double, expThreshold: Double = 64D): Double

  32. def sigmoid(x: Double, expThreshold: Double): Double

    Annotations
    @inline()
  33. def sigmoid(x: Double): Double

    Annotations
    @inline()
  34. def sigmoidPrimitive(y: Double): Double

    Annotations
    @inline()
  35. def softMaxPrimitive(y: Double): Double

    Annotations
    @inline()
  36. def softplus(x: Double, expThreshold: Double = 64): Double

    Annotations
    @inline()
  37. def softplusPrimitive(y: Double, expThreshold: Double = 64): Double

    Annotations
    @inline()
  38. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  39. def tanh(x: Double): Double

    Annotations
    @inline()
  40. def tanhPrimitive(y: Double): Double

    Annotations
    @inline()
  41. def toString(): String

    Definition Classes
    AnyRef → Any
  42. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped