dk.bayes.factorgraph.ep

GenericEP

Related Doc: package ep

case class GenericEP(factorGraph: FactorGraph, threshold: Double = 0.00001) extends EP with Product with Serializable

Default implementation of the Expectation Propagation Bayesian Inference algorithm.

threshold

Calibration criteria: the maximum absolute difference between old and new corresponding messages on a factor graph,

Linear Supertypes
Serializable, Serializable, Product, Equals, EP, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GenericEP
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. EP
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GenericEP(factorGraph: FactorGraph, threshold: Double = 0.00001)

    threshold

    Calibration criteria: the maximum absolute difference between old and new corresponding messages on a factor graph,

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  5. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  7. val factorGraph: FactorGraph

  8. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  10. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  11. def marginal(variableId: Int, variablesIds: Int*): Factor

    Returns marginal factor for a given variable(s) in a factor graph.

    Returns marginal factor for a given variable(s) in a factor graph.

    Definition Classes
    GenericEPEP
  12. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  15. def setEvidence(varId: Int, varValue: AnyVal): Unit

    Sets evidence in a factor graph.

    Sets evidence in a factor graph.

    varId

    Variable id

    varValue

    Variable value

    Definition Classes
    GenericEPEP
  16. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  17. val threshold: Double

    Calibration criteria: the maximum absolute difference between old and new corresponding messages on a factor graph,

  18. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from EP

Inherited from AnyRef

Inherited from Any

Ungrouped