dk.bayes.math.gaussian

MultivariateGaussian

Related Docs: object MultivariateGaussian | package gaussian

case class MultivariateGaussian(m: DenseVector[Double], v: DenseMatrix[Double]) extends Product with Serializable

Multivariate Gaussian from the book 'Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics), 2009'

Linear Supertypes
Serializable, Serializable, Product, Equals, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MultivariateGaussian
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MultivariateGaussian(m: DenseVector[Double], v: DenseMatrix[Double])

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. def *(linearGaussian: LinearGaussian): MultivariateGaussian

  4. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  6. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def draw(randSeed: Int): Array[Double]

  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  12. val m: DenseVector[Double]

  13. def marginal(varIndex: Int): Gaussian

    Returns Gaussian marginal for a random variable at a given position

  14. def marginalise(varIndex: Int): MultivariateGaussian

    Returns Gaussian, marginalising out given variable

    Returns Gaussian, marginalising out given variable

    varIndex

    Index of a variable, which is marginalised out

  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. def normConstant(): Double

  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. def pdf(x: DenseVector[Double]): Double

    Returns the value of probability density function for a given value of vector x.

  20. def pdf(x: Double): Double

    Returns the value of probability density function for a given value of x.

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  22. def toGaussian(): Gaussian

  23. val v: DenseMatrix[Double]

  24. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. def withEvidence(varIndex: Int, value: Double): MultivariateGaussian

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped