dk.bayes.math.gaussian.canonical

DenseCanonicalGaussian

Related Docs: object DenseCanonicalGaussian | package canonical

case class DenseCanonicalGaussian(k: DenseMatrix[Double], h: DenseVector[Double], g: Double) extends CanonicalGaussian with NumericOps[DenseCanonicalGaussian] with Product with Serializable

Canonical Gaussian following: Kevin P. Murphy, 'A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables' Daphne Koller, Nir Friedman. Probabilistic Graphical Models, Principles and Techniques, 2009'

k

See Canonical Gaussian definition

h

See Canonical Gaussian definition

g

See Canonical Gaussian definition

Linear Supertypes
Serializable, Serializable, Product, Equals, NumericOps[DenseCanonicalGaussian], CanonicalGaussian, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. DenseCanonicalGaussian
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. NumericOps
  7. CanonicalGaussian
  8. AnyRef
  9. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DenseCanonicalGaussian(k: DenseMatrix[Double], h: DenseVector[Double], g: Double)

    k

    See Canonical Gaussian definition

    h

    See Canonical Gaussian definition

    g

    See Canonical Gaussian definition

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. def *(that: DenseCanonicalGaussian)(implicit multOp: multOp[DenseCanonicalGaussian]): DenseCanonicalGaussian

    Definition Classes
    NumericOps
  4. def /(that: DenseCanonicalGaussian)(implicit divideOp: divideOp[DenseCanonicalGaussian]): DenseCanonicalGaussian

    Definition Classes
    NumericOps
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def extend(size: Int, startIndex: Int): DenseCanonicalGaussian

    Extends the scope of Gaussian.

    Extends the scope of Gaussian. It is useful for * and / operations on Gaussians with different variables.

    size

    The size of extended Gaussian

    startIndex

    The position of this Gaussian in the new extended Gaussian

  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. val g: Double

    See Canonical Gaussian definition

  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def getLogP(): Double

    Returns logarithm of normalisation constant.

  14. val h: DenseVector[Double]

    See Canonical Gaussian definition

  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. val k: DenseMatrix[Double]

    See Canonical Gaussian definition

  17. def marginal(varIndexes: Int*): DenseCanonicalGaussian

    Marginalise out all variables except of the variables at given indexes

  18. def marginal(varIndex1: Int, varIndex2: Int): DenseCanonicalGaussian

    Marginalise out all variables except of the variables at a given indexes

  19. def marginal(varIndex: Int): DenseCanonicalGaussian

    Marginalise out all variables except of the variable at a given index

  20. def marginalise(varIndex: Int): DenseCanonicalGaussian

    Returns gaussian integral marginalising out the variable at a given index

  21. lazy val mean: DenseVector[Double]

  22. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  23. final def notify(): Unit

    Definition Classes
    AnyRef
  24. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  25. def pdf(x: DenseVector[Double]): Double

    Returns the value of probability density function for a given value of vector x.

  26. def pdf(x: Double): Double

    Returns the value of probability density function for a given value of x.

  27. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  28. def toGaussian(): Gaussian

  29. lazy val variance: DenseMatrix[Double]

  30. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. def withEvidence(varIndex: Int, varValue: Double): DenseCanonicalGaussian

    Returns canonical gaussian given evidence.

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from CanonicalGaussian

Inherited from AnyRef

Inherited from Any

Ungrouped