Object

smfsb

Step

Related Doc: package smfsb

Permalink

object Step

Functions which accept a Spn and return a function for simulating from the transition kernel of that model

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Step
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def cle(n: Spn[DoubleState], dt: Double = 0.01): (DoubleState, Time, Time) ⇒ DoubleState

    Permalink

    An Euler-Maruyama simulation of a CLE approximation to the provided Spn.

    An Euler-Maruyama simulation of a CLE approximation to the provided Spn.

    n

    A Spn[DoubleState] model (note that the state must be continous)

    dt

    The internal time step of the algorithm. Not the same as the deltat of the returned transition kernel.

    returns

    A function with type signature (x0: DoubleState, t0: Time, deltat: Time) => DoubleState which will simulate the state of the system at time t0+deltat given initial state x0 and intial time t0

  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def euler(n: Spn[DoubleState], dt: Double = 0.01): (DoubleState, Time, Time) ⇒ DoubleState

    Permalink

    A simple Euler integration of the continuous deterministic approximation to the provided Spn.

    A simple Euler integration of the continuous deterministic approximation to the provided Spn. Euler methods are well-known to be very unstable, but the function can be useful for getting a basic idea of how the model behaves in the absence of noise.

    n

    A Spn[DoubleState] model (note that the state must be continous)

    dt

    The internal time step of the algorithm. Not the same as the deltat of the returned transition kernel.

    returns

    A function with type signature (x0: DoubleState, t0: Time, deltat: Time) => DoubleState which will simulate the state of the system at time t0+deltat given initial state x0 and intial time t0

  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def gillespie(n: Spn[IntState]): (IntState, Time, Time) ⇒ IntState

    Permalink

    The Gillespie algorithm, sometimes known as the direct method, or the stochastic simulation algorithm (SSA)

    The Gillespie algorithm, sometimes known as the direct method, or the stochastic simulation algorithm (SSA)

    n

    A Spn[IntState] model

    returns

    A function with type signature (x0: IntState, t0: Time, deltat: Time) => IntState which will simulate the state of the system at time t0+deltat given initial state x0 and intial time t0

  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. def pts(n: Spn[IntState], dt: Double = 0.01): (IntState, Time, Time) ⇒ IntState

    Permalink

    A Poisson time-stepping algorithm.

    A Poisson time-stepping algorithm. Like a tau-leaping algorithm, but with fixed step sizes.

    n

    A Spn[IntState] model

    dt

    The internal time step of the algorithm. Not the same as the deltat of the returned transition kernel.

    returns

    A function with type signature (x0: IntState, t0: Time, deltat: Time) => IntState which will simulate the state of the system at time t0+deltat given initial state x0 and intial time t0

  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  20. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped