Package

smile

manifold

Permalink

package manifold

Manifold learning finds a low-dimensional basis for describing high-dimensional data. Manifold learning is a popular approach to nonlinear dimensionality reduction. Algorithms for this task are based on the idea that the dimensionality of many data sets is only artificially high; though each data point consists of perhaps thousands of features, it may be described as a function of only a few underlying parameters. That is, the data points are actually samples from a low-dimensional manifold that is embedded in a high-dimensional space. Manifold learning algorithms attempt to uncover these parameters in order to find a low-dimensional representation of the data.

Some prominent approaches are locally linear embedding (LLE), Hessian LLE, Laplacian eigenmaps, and LTSA. These techniques construct a low-dimensional data representation using a cost function that retains local properties of the data, and can be viewed as defining a graph-based kernel for Kernel PCA. More recently, techniques have been proposed that, instead of defining a fixed kernel, try to learn the kernel using semidefinite programming. The most prominent example of such a technique is maximum variance unfolding (MVU). The central idea of MVU is to exactly preserve all pairwise distances between nearest neighbors (in the inner product space), while maximizing the distances between points that are not nearest neighbors.

An alternative approach to neighborhood preservation is through the minimization of a cost function that measures differences between distances in the input and output spaces. Important examples of such techniques include classical multidimensional scaling (which is identical to PCA), Isomap (which uses geodesic distances in the data space), diffusion maps (which uses diffusion distances in the data space), t-SNE (which minimizes the divergence between distributions over pairs of points), and curvilinear component analysis.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. manifold
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. object $dummy

    Permalink

    Hacking scaladoc issue-8124.

    Hacking scaladoc issue-8124. The user should ignore this object.

  2. def isomap(data: Array[Array[Double]], k: Int, d: Int = 2, CIsomap: Boolean = true): IsoMap

    Permalink

    Isometric feature mapping.

    Isometric feature mapping. Isomap is a widely used low-dimensional embedding methods, where geodesic distances on a weighted graph are incorporated with the classical multidimensional scaling. Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional data points. Isomap is highly efficient and generally applicable to a broad range of data sources and dimensionalities.

    To be specific, the classical MDS performs low-dimensional embedding based on the pairwise distance between data points, which is generally measured using straight-line Euclidean distance. Isomap is distinguished by its use of the geodesic distance induced by a neighborhood graph embedded in the classical scaling. This is done to incorporate manifold structure in the resulting embedding. Isomap defines the geodesic distance to be the sum of edge weights along the shortest path between two nodes. The top n eigenvectors of the geodesic distance matrix, represent the coordinates in the new n-dimensional Euclidean space.

    The connectivity of each data point in the neighborhood graph is defined as its nearest k Euclidean neighbors in the high-dimensional space. This step is vulnerable to "short-circuit errors" if k is too large with respect to the manifold structure or if noise in the data moves the points slightly off the manifold. Even a single short-circuit error can alter many entries in the geodesic distance matrix, which in turn can lead to a drastically different (and incorrect) low-dimensional embedding. Conversely, if k is too small, the neighborhood graph may become too sparse to approximate geodesic paths accurately.

    This class implements C-Isomap that involves magnifying the regions of high density and shrink the regions of low density of data points in the manifold. Edge weights that are maximized in Multi-Dimensional Scaling(MDS) are modified, with everything else remaining unaffected.

    References:
    • J. B. Tenenbaum, V. de Silva and J. C. Langford A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500):2319-2323, 2000.
    data

    the data set.

    k

    k-nearest neighbor.

    d

    the dimension of the manifold.

    CIsomap

    C-Isomap algorithm if true, otherwise standard algorithm.

  3. def laplacian(data: Array[Array[Double]], k: Int, d: Int = 2, t: Double = 1): LaplacianEigenmap

    Permalink

    Laplacian Eigenmap.

    Laplacian Eigenmap. Using the notion of the Laplacian of the nearest neighbor adjacency graph, Laplacian Eigenmap compute a low dimensional representation of the dataset that optimally preserves local neighborhood information in a certain sense. The representation map generated by the algorithm may be viewed as a discrete approximation to a continuous map that naturally arises from the geometry of the manifold.

    The locality preserving character of the Laplacian Eigenmap algorithm makes it relatively insensitive to outliers and noise. It is also not prone to "short circuiting" as only the local distances are used.

    References:
    • Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. NIPS, 2001.
    data

    the data set.

    k

    k-nearest neighbor.

    d

    the dimension of the manifold.

    t

    the smooth/width parameter of heat kernel e-||x-y||2 / t. Non-positive value means discrete weights.

  4. def lle(data: Array[Array[Double]], k: Int, d: Int = 2): LLE

    Permalink

    Locally Linear Embedding.

    Locally Linear Embedding. It has several advantages over Isomap, including faster optimization when implemented to take advantage of sparse matrix algorithms, and better results with many problems. LLE also begins by finding a set of the nearest neighbors of each point. It then computes a set of weights for each point that best describe the point as a linear combination of its neighbors. Finally, it uses an eigenvector-based optimization technique to find the low-dimensional embedding of points, such that each point is still described with the same linear combination of its neighbors. LLE tends to handle non-uniform sample densities poorly because there is no fixed unit to prevent the weights from drifting as various regions differ in sample densities.

    References:
    • Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500):2323-2326, 2000.
    data

    the data set.

    k

    k-nearest neighbor.

    d

    the dimension of the manifold.

  5. def tsne(X: Array[Array[Double]], d: Int = 2, perplexity: Double = 20.0, eta: Double = 200.0, iterations: Int = 1000): TSNE

    Permalink

    t-distributed stochastic neighbor embedding.

    t-distributed stochastic neighbor embedding. t-SNE is a nonlinear dimensionality reduction technique that is particularly well suited for embedding high-dimensional data into a space of two or three dimensions, which can then be visualized in a scatter plot. Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points.

    References:
    • L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15(Oct):3221-3245, 2014.
    • L.J.P. van der Maaten and G.E. Hinton. Visualizing Non-Metric Similarities in Multiple Maps. Machine Learning 87(1):33-55, 2012.
    • L.J.P. van der Maaten. Learning a Parametric Embedding by Preserving Local Structure. In Proceedings of the Twelfth International Conference on Artificial Intelligence & Statistics (AI-STATS), JMLR W&CP 5:384-391, 2009.
    • L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.
    X

    input data. If X is a square matrix, it is assumed to be the squared distance/dissimilarity matrix.

    d

    the dimension of the manifold.

    perplexity

    the perplexity of the conditional distribution.

    eta

    the learning rate.

    iterations

    the number of iterations.

  6. def umap(data: Array[Array[Double]], k: Int = 15, d: Int = 2, iterations: Int = 0, learningRate: Double = 1.0, minDist: Double = 0.1, spread: Double = 1.0, negativeSamples: Int = 5, repulsionStrength: Double = 1.0): UMAP

    Permalink

    Uniform Manifold Approximation and Projection.

    Uniform Manifold Approximation and Projection.

    UMAP is a dimension reduction technique that can be used for visualization similarly to t-SNE, but also for general non-linear dimension reduction. The algorithm is founded on three assumptions about the data:

    • The data is uniformly distributed on a Riemannian manifold;
    • The Riemannian metric is locally constant (or can be approximated as such);
    • The manifold is locally connected.

    From these assumptions it is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent fuzzy topological structure.

    data

    the input data.

    k

    k-nearest neighbors. Larger values result in more global views of the manifold, while smaller values result in more local data being preserved. Generally in the range 2 to 100.

    d

    The target embedding dimensions. defaults to 2 to provide easy visualization, but can reasonably be set to any integer value in the range 2 to 100.

    iterations

    The number of iterations to optimize the low-dimensional representation. Larger values result in more accurate embedding. Muse be greater than 10. Choose wise value based on the size of the input data, e.g, 200 for large data (1000+ samples), 500 for small.

    learningRate

    The initial learning rate for the embedding optimization, default 1.

    minDist

    The desired separation between close points in the embedding space. Smaller values will result in a more clustered/clumped embedding where nearby points on the manifold are drawn closer together, while larger values will result on a more even disperse of points. The value should be set no-greater than and relative to the spread value, which determines the scale at which embedded points will be spread out. default 0.1.

    spread

    The effective scale of embedded points. In combination with minDist, this determines how clustered/clumped the embedded points are. default 1.0.

    negativeSamples

    The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy, default 5.

    repulsionStrength

    Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples, default 1.0.

Inherited from AnyRef

Inherited from Any

Ungrouped