Class Solution


  • public class Solution
    extends Object
    497 - Random Point in Non-overlapping Rectangles.

    Medium

    You are given an array of non-overlapping axis-aligned rectangles rects where rects[i] = [ai, bi, xi, yi] indicates that (ai, bi) is the bottom-left corner point of the ith rectangle and (xi, yi) is the top-right corner point of the ith rectangle. Design an algorithm to pick a random integer point inside the space covered by one of the given rectangles. A point on the perimeter of a rectangle is included in the space covered by the rectangle.

    Any integer point inside the space covered by one of the given rectangles should be equally likely to be returned.

    Note that an integer point is a point that has integer coordinates.

    Implement the Solution class:

    • Solution(int[][] rects) Initializes the object with the given rectangles rects.
    • int[] pick() Returns a random integer point [u, v] inside the space covered by one of the given rectangles.

    Example 1:

    Input [“Solution”, “pick”, “pick”, “pick”, “pick”, “pick”] [[-2, -2, 1, 1], [2, 2, 4, 6], [], [], [], [], []]

    Output: [null, [1, -2], [1, -1], [-1, -2], [-2, -2], [0, 0]]

    Explanation:

     Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]);
     solution.pick(); // return [1, -2]
     solution.pick(); // return [1, -1]
     solution.pick(); // return [-1, -2]
     solution.pick(); // return [-2, -2]
     solution.pick(); // return [0, 0]
    

    Constraints:

    • 1 <= rects.length <= 100
    • rects[i].length == 4
    • -109 <= ai < xi <= 109
    • -109 <= bi < yi <= 109
    • xi - ai <= 2000
    • yi - bi <= 2000
    • All the rectangles do not overlap.
    • At most 104 calls will be made to pick.
    • Constructor Detail

      • Solution

        public Solution​(int[][] rects)
    • Method Detail

      • pick

        public int[] pick()