Class Solution


  • public class Solution
    extends Object
    1463 - Cherry Pickup II\. Hard You are given a `rows x cols` matrix `grid` representing a field of cherries where `grid[i][j]` represents the number of cherries that you can collect from the `(i, j)` cell. You have two robots that can collect cherries for you: * **Robot #1** is located at the **top-left corner** `(0, 0)`, and * **Robot #2** is located at the **top-right corner** `(0, cols - 1)`. Return _the maximum number of cherries collection using both robots by following the rules below_: * From a cell `(i, j)`, robots can move to cell `(i + 1, j - 1)`, `(i + 1, j)`, or `(i + 1, j + 1)`. * When any robot passes through a cell, It picks up all cherries, and the cell becomes an empty cell. * When both robots stay in the same cell, only one takes the cherries. * Both robots cannot move outside of the grid at any moment. * Both robots should reach the bottom row in `grid`. **Example 1:** ![](https://assets.leetcode.com/uploads/2020/04/29/sample_1_1802.png) **Input:** grid = \[\[3,1,1],[2,5,1],[1,5,5],[2,1,1]] **Output:** 24 **Explanation:** Path of robot #1 and #2 are described in color green and blue respectively. Cherries taken by Robot #1, (3 + 2 + 5 + 2) = 12. Cherries taken by Robot #2, (1 + 5 + 5 + 1) = 12. Total of cherries: 12 + 12 = 24. **Example 2:** ![](https://assets.leetcode.com/uploads/2020/04/23/sample_2_1802.png) **Input:** grid = \[\[1,0,0,0,0,0,1],[2,0,0,0,0,3,0],[2,0,9,0,0,0,0],[0,3,0,5,4,0,0],[1,0,2,3,0,0,6]] **Output:** 28 **Explanation:** Path of robot #1 and #2 are described in color green and blue respectively. Cherries taken by Robot #1, (1 + 9 + 5 + 2) = 17. Cherries taken by Robot #2, (1 + 3 + 4 + 3) = 11. Total of cherries: 17 + 11 = 28. **Constraints:** * `rows == grid.length` * `cols == grid[i].length` * `2 <= rows, cols <= 70` * `0 <= grid[i][j] <= 100`
    • Constructor Detail

      • Solution

        public Solution()
    • Method Detail

      • cherryPickup

        public int cherryPickup​(int[][] grid)