public class Solution
extends Object
1870 - Minimum Speed to Arrive on Time\.
Medium
You are given a floating-point number `hour`, representing the amount of time you have to reach the office. To commute to the office, you must take `n` trains in sequential order. You are also given an integer array `dist` of length `n`, where `dist[i]` describes the distance (in kilometers) of the ith
train ride.
Each train can only depart at an integer hour, so you may need to wait in between each train ride.
* For example, if the 1st
train ride takes `1.5` hours, you must wait for an additional `0.5` hours before you can depart on the 2nd
train ride at the 2 hour mark.
Return _the **minimum positive integer** speed **(in kilometers per hour)** that all the trains must travel at for you to reach the office on time, or_ `-1` _if it is impossible to be on time_.
Tests are generated such that the answer will not exceed 107
and `hour` will have **at most two digits after the decimal point**.
**Example 1:**
**Input:** dist = [1,3,2], hour = 6
**Output:** 1
**Explanation:** At speed 1:
- The first train ride takes 1/1 = 1 hour.
- Since we are already at an integer hour, we depart immediately at the 1 hour mark. The second train takes 3/1 = 3 hours.
- Since we are already at an integer hour, we depart immediately at the 4 hour mark. The third train takes 2/1 = 2 hours.
- You will arrive at exactly the 6 hour mark.
**Example 2:**
**Input:** dist = [1,3,2], hour = 2.7
**Output:** 3
**Explanation:** At speed 3:
- The first train ride takes 1/3 = 0.33333 hours.
- Since we are not at an integer hour, we wait until the 1 hour mark to depart. The second train ride takes 3/3 = 1 hour.
- Since we are already at an integer hour, we depart immediately at the 2 hour mark. The third train takes 2/3 = 0.66667 hours.
- You will arrive at the 2.66667 hour mark.
**Example 3:**
**Input:** dist = [1,3,2], hour = 1.9
**Output:** -1
**Explanation:** It is impossible because the earliest the third train can depart is at the 2 hour mark.
**Constraints:**
* `n == dist.length`
* 1 <= n <= 105
* 1 <= dist[i] <= 105
* 1 <= hour <= 109
* There will be at most two digits after the decimal point in `hour`.