Class Solution


  • public class Solution
    extends Object
    2136 - Earliest Possible Day of Full Bloom\. Hard You have `n` flower seeds. Every seed must be planted first before it can begin to grow, then bloom. Planting a seed takes time and so does the growth of a seed. You are given two **0-indexed** integer arrays `plantTime` and `growTime`, of length `n` each: * `plantTime[i]` is the number of **full days** it takes you to **plant** the ith seed. Every day, you can work on planting exactly one seed. You **do not** have to work on planting the same seed on consecutive days, but the planting of a seed is not complete **until** you have worked `plantTime[i]` days on planting it in total. * `growTime[i]` is the number of **full days** it takes the ith seed to grow after being completely planted. **After** the last day of its growth, the flower **blooms** and stays bloomed forever. From the beginning of day `0`, you can plant the seeds in **any** order. Return _the **earliest** possible day where **all** seeds are blooming_. **Example 1:** ![](https://assets.leetcode.com/uploads/2021/12/21/1.png) **Input:** plantTime = [1,4,3], growTime = [2,3,1] **Output:** 9 **Explanation:** The grayed out pots represent planting days, colored pots represent growing days, and the flower represents the day it blooms. One optimal way is: On day 0, plant the 0th seed. The seed grows for 2 full days and blooms on day 3. On days 1, 2, 3, and 4, plant the 1st seed. The seed grows for 3 full days and blooms on day 8. On days 5, 6, and 7, plant the 2nd seed. The seed grows for 1 full day and blooms on day 9. Thus, on day 9, all the seeds are blooming. **Example 2:** ![](https://assets.leetcode.com/uploads/2021/12/21/2.png) **Input:** plantTime = [1,2,3,2], growTime = [2,1,2,1] **Output:** 9 **Explanation:** The grayed out pots represent planting days, colored pots represent growing days, and the flower represents the day it blooms. One optimal way is: On day 1, plant the 0th seed. The seed grows for 2 full days and blooms on day 4. On days 0 and 3, plant the 1st seed. The seed grows for 1 full day and blooms on day 5. On days 2, 4, and 5, plant the 2nd seed. The seed grows for 2 full days and blooms on day 8. On days 6 and 7, plant the 3rd seed. The seed grows for 1 full day and blooms on day 9. Thus, on day 9, all the seeds are blooming. **Example 3:** **Input:** plantTime = [1], growTime = [1] **Output:** 2 **Explanation:** On day 0, plant the 0th seed. The seed grows for 1 full day and blooms on day 2. Thus, on day 2, all the seeds are blooming. **Constraints:** * `n == plantTime.length == growTime.length` * 1 <= n <= 105 * 1 <= plantTime[i], growTime[i] <= 104
    • Constructor Detail

      • Solution

        public Solution()
    • Method Detail

      • earliestFullBloom

        public int earliestFullBloom​(int[] plantTime,
                                     int[] growTime)