public class Solution
extends Object
2221 - Find Triangular Sum of an Array\.
Medium
You are given a **0-indexed** integer array `nums`, where `nums[i]` is a digit between `0` and `9` ( **inclusive** ).
The **triangular sum** of `nums` is the value of the only element present in `nums` after the following process terminates:
1. Let `nums` comprise of `n` elements. If `n == 1`, **end** the process. Otherwise, **create** a new **0-indexed** integer array `newNums` of length `n - 1`.
2. For each index `i`, where `0 <= i < n - 1`, **assign** the value of `newNums[i]` as `(nums[i] + nums[i+1]) % 10`, where `%` denotes modulo operator.
3. **Replace** the array `nums` with `newNums`.
4. **Repeat** the entire process starting from step 1.
Return _the triangular sum of_ `nums`.
**Example 1:**

**Input:** nums = [1,2,3,4,5]
**Output:** 8
**Explanation:** The above diagram depicts the process from which we obtain the triangular sum of the array.
**Example 2:**
**Input:** nums = [5]
**Output:** 5
**Explanation:** Since there is only one element in nums, the triangular sum is the value of that element itself.
**Constraints:**
* `1 <= nums.length <= 1000`
* `0 <= nums[i] <= 9`