Class Solution


  • public class Solution
    extends Object
    2295 - Replace Elements in an Array\. Medium You are given a **0-indexed** array `nums` that consists of `n` **distinct** positive integers. Apply `m` operations to this array, where in the ith operation you replace the number `operations[i][0]` with `operations[i][1]`. It is guaranteed that in the ith operation: * `operations[i][0]` **exists** in `nums`. * `operations[i][1]` does **not** exist in `nums`. Return _the array obtained after applying all the operations_. **Example 1:** **Input:** nums = [1,2,4,6], operations = \[\[1,3],[4,7],[6,1]] **Output:** [3,2,7,1] **Explanation:** We perform the following operations on nums: - Replace the number 1 with 3. nums becomes [**3** ,2,4,6]. - Replace the number 4 with 7. nums becomes [3,2, **7** ,6]. - Replace the number 6 with 1. nums becomes [3,2,7, **1** ]. We return the final array [3,2,7,1]. **Example 2:** **Input:** nums = [1,2], operations = \[\[1,3],[2,1],[3,2]] **Output:** [2,1] **Explanation:** We perform the following operations to nums: - Replace the number 1 with 3. nums becomes [**3** ,2]. - Replace the number 2 with 1. nums becomes [3, **1** ]. - Replace the number 3 with 2. nums becomes [**2** ,1]. We return the array [2,1]. **Constraints:** * `n == nums.length` * `m == operations.length` * 1 <= n, m <= 105 * All the values of `nums` are **distinct**. * `operations[i].length == 2` * 1 <= nums[i], operations[i][0], operations[i][1] <= 106 * `operations[i][0]` will exist in `nums` when applying the ith operation. * `operations[i][1]` will not exist in `nums` when applying the ith operation.
    • Constructor Detail

      • Solution

        public Solution()
    • Method Detail

      • arrayChange

        public int[] arrayChange​(int[] nums,
                                 int[][] operations)