Class Solution

java.lang.Object
g0301_0400.s0393_utf_8_validation.Solution

public class Solution extends Object
393 - UTF-8 Validation\. Medium Given an integer array `data` representing the data, return whether it is a valid **UTF-8** encoding. A character in **UTF8** can be from **1 to 4 bytes** long, subjected to the following rules: 1. For a **1-byte** character, the first bit is a `0`, followed by its Unicode code. 2. For an **n-bytes** character, the first `n` bits are all one's, the `n + 1` bit is `0`, followed by `n - 1` bytes with the most significant `2` bits being `10`. This is how the UTF-8 encoding would work: Char. number range | UTF-8 octet sequence (hexadecimal) | (binary) --------------------+--------------------------------------------- 0000 0000-0000 007F | 0xxxxxxx 0000 0080-0000 07FF | 110xxxxx 10xxxxxx 0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx 0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx **Note:** The input is an array of integers. Only the **least significant 8 bits** of each integer is used to store the data. This means each integer represents only 1 byte of data. **Example 1:** **Input:** data = [197,130,1] **Output:** true **Explanation:** data represents the octet sequence: 11000101 10000010 00000001. It is a valid utf-8 encoding for a 2-bytes character followed by a 1-byte character. **Example 2:** **Input:** data = [235,140,4] **Output:** false **Explanation:** data represented the octet sequence: 11101011 10001100 00000100. The first 3 bits are all one's and the 4th bit is 0 means it is a 3-bytes character. The next byte is a continuation byte which starts with 10 and that's correct. But the second continuation byte does not start with 10, so it is invalid. **Constraints:** * 1 <= data.length <= 2 * 104 * `0 <= data[i] <= 255`
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • validUtf8

      public boolean validUtf8(int[] data)