Class Solution

java.lang.Object
g0401_0500.s0464_can_i_win.Solution

public class Solution extends Object
464 - Can I Win\. Medium In the "100 game" two players take turns adding, to a running total, any integer from `1` to `10`. The player who first causes the running total to **reach or exceed** 100 wins. What if we change the game so that players **cannot** re-use integers? For example, two players might take turns drawing from a common pool of numbers from 1 to 15 without replacement until they reach a total >= 100. Given two integers `maxChoosableInteger` and `desiredTotal`, return `true` if the first player to move can force a win, otherwise, return `false`. Assume both players play **optimally**. **Example 1:** **Input:** maxChoosableInteger = 10, desiredTotal = 11 **Output:** false **Explanation:** No matter which integer the first player choose, the first player will lose. The first player can choose an integer from 1 up to 10. If the first player choose 1, the second player can only choose integers from 2 up to 10. The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal. Same with other integers chosen by the first player, the second player will always win. **Example 2:** **Input:** maxChoosableInteger = 10, desiredTotal = 0 **Output:** true **Example 3:** **Input:** maxChoosableInteger = 10, desiredTotal = 1 **Output:** true **Constraints:** * `1 <= maxChoosableInteger <= 20` * `0 <= desiredTotal <= 300`
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • canIWin

      public boolean canIWin(int maxChoosableInteger, int desiredTotal)