java.lang.Object
g0801_0900.s0852_peak_index_in_a_mountain_array.Solution

public class Solution extends Object
852 - Peak Index in a Mountain Array\. Easy Let's call an array `arr` a **mountain** if the following properties hold: * `arr.length >= 3` * There exists some `i` with `0 < i < arr.length - 1` such that: * `arr[0] < arr[1] < ... arr[i-1] < arr[i]` * `arr[i] > arr[i+1] > ... > arr[arr.length - 1]` Given an integer array `arr` that is **guaranteed** to be a mountain, return any `i` such that `arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]`. **Example 1:** **Input:** arr = [0,1,0] **Output:** 1 **Example 2:** **Input:** arr = [0,2,1,0] **Output:** 1 **Example 3:** **Input:** arr = [0,10,5,2] **Output:** 1 **Constraints:** * 3 <= arr.length <= 104 * 0 <= arr[i] <= 106 * `arr` is **guaranteed** to be a mountain array. **Follow up:** Finding the `O(n)` is straightforward, could you find an `O(log(n))` solution?
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • peakIndexInMountainArray

      public int peakIndexInMountainArray(int[] arr)