java.lang.Object
g1101_1200.s1128_number_of_equivalent_domino_pairs.Solution

public class Solution extends Object
1128 - Number of Equivalent Domino Pairs\. Easy Given a list of `dominoes`, `dominoes[i] = [a, b]` is **equivalent to** `dominoes[j] = [c, d]` if and only if either (`a == c` and `b == d`), or (`a == d` and `b == c`) - that is, one domino can be rotated to be equal to another domino. Return _the number of pairs_ `(i, j)` _for which_ `0 <= i < j < dominoes.length`_, and_ `dominoes[i]` _is **equivalent to**_ `dominoes[j]`. **Example 1:** **Input:** dominoes = \[\[1,2],[2,1],[3,4],[5,6]] **Output:** 1 **Example 2:** **Input:** dominoes = \[\[1,2],[1,2],[1,1],[1,2],[2,2]] **Output:** 3 **Constraints:** * 1 <= dominoes.length <= 4 * 104 * `dominoes[i].length == 2` * `1 <= dominoes[i][j] <= 9`
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • numEquivDominoPairs

      public int numEquivDominoPairs(int[][] dominoes)