Class Solution
java.lang.Object
g1101_1200.s1128_number_of_equivalent_domino_pairs.Solution
1128 - Number of Equivalent Domino Pairs\.
Easy
Given a list of `dominoes`, `dominoes[i] = [a, b]` is **equivalent to** `dominoes[j] = [c, d]` if and only if either (`a == c` and `b == d`), or (`a == d` and `b == c`) - that is, one domino can be rotated to be equal to another domino.
Return _the number of pairs_ `(i, j)` _for which_ `0 <= i < j < dominoes.length`_, and_ `dominoes[i]` _is **equivalent to**_ `dominoes[j]`.
**Example 1:**
**Input:** dominoes = \[\[1,2],[2,1],[3,4],[5,6]]
**Output:** 1
**Example 2:**
**Input:** dominoes = \[\[1,2],[1,2],[1,1],[1,2],[2,2]]
**Output:** 3
**Constraints:**
*
1 <= dominoes.length <= 4 * 104
* `dominoes[i].length == 2`
* `1 <= dominoes[i][j] <= 9`-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
numEquivDominoPairs
public int numEquivDominoPairs(int[][] dominoes)
-