java.lang.Object
g1701_1800.s1706_where_will_the_ball_fall.Solution

public class Solution extends Object
1706 - Where Will the Ball Fall\. Medium You have a 2-D `grid` of size `m x n` representing a box, and you have `n` balls. The box is open on the top and bottom sides. Each cell in the box has a diagonal board spanning two corners of the cell that can redirect a ball to the right or to the left. * A board that redirects the ball to the right spans the top-left corner to the bottom-right corner and is represented in the grid as `1`. * A board that redirects the ball to the left spans the top-right corner to the bottom-left corner and is represented in the grid as `-1`. We drop one ball at the top of each column of the box. Each ball can get stuck in the box or fall out of the bottom. A ball gets stuck if it hits a "V" shaped pattern between two boards or if a board redirects the ball into either wall of the box. Return _an array_ `answer` _of size_ `n` _where_ `answer[i]` _is the column that the ball falls out of at the bottom after dropping the ball from the_ ith _column at the top, or `-1` _if the ball gets stuck in the box_._ **Example 1:** **![](https://assets.leetcode.com/uploads/2019/09/26/ball.jpg)** **Input:** grid = \[\[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]] **Output:** [1,-1,-1,-1,-1] **Explanation:** This example is shown in the photo. Ball b0 is dropped at column 0 and falls out of the box at column 1. Ball b1 is dropped at column 1 and will get stuck in the box between column 2 and 3 and row 1. Ball b2 is dropped at column 2 and will get stuck on the box between column 2 and 3 and row 0. Ball b3 is dropped at column 3 and will get stuck on the box between column 2 and 3 and row 0. Ball b4 is dropped at column 4 and will get stuck on the box between column 2 and 3 and row 1. **Example 2:** **Input:** grid = \[\[-1]] **Output:** [-1] **Explanation:** The ball gets stuck against the left wall. **Example 3:** **Input:** grid = \[\[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]] **Output:** [0,1,2,3,4,-1] **Constraints:** * `m == grid.length` * `n == grid[i].length` * `1 <= m, n <= 100` * `grid[i][j]` is `1` or `-1`.
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • findBall

      public int[] findBall(int[][] grid)