java.lang.Object
g1801_1900.s1818_minimum_absolute_sum_difference.Solution

public class Solution extends Object
1818 - Minimum Absolute Sum Difference\. Medium You are given two positive integer arrays `nums1` and `nums2`, both of length `n`. The **absolute sum difference** of arrays `nums1` and `nums2` is defined as the **sum** of `|nums1[i] - nums2[i]|` for each `0 <= i < n` ( **0-indexed** ). You can replace **at most one** element of `nums1` with **any** other element in `nums1` to **minimize** the absolute sum difference. Return the _minimum absolute sum difference **after** replacing at most one element in the array `nums1`._ Since the answer may be large, return it **modulo** 109 + 7. `|x|` is defined as: * `x` if `x >= 0`, or * `-x` if `x < 0`. **Example 1:** **Input:** nums1 = [1,7,5], nums2 = [2,3,5] **Output:** 3 **Explanation:** There are two possible optimal solutions: - Replace the second element with the first: [1, **7** ,5] => [1, **1** ,5], or - Replace the second element with the third: [1, **7** ,5] => [1, **5** ,5]. Both will yield an absolute sum difference of `|1-2| + (|1-3| or |5-3|) + |5-5| =` 3\. **Example 2:** **Input:** nums1 = [2,4,6,8,10], nums2 = [2,4,6,8,10] **Output:** 0 **Explanation:** nums1 is equal to nums2 so no replacement is needed. This will result in an absolute sum difference of 0. **Example 3:** **Input:** nums1 = [1,10,4,4,2,7], nums2 = [9,3,5,1,7,4] **Output:** 20 **Explanation:** Replace the first element with the second: [**1** ,10,4,4,2,7] => [**10** ,10,4,4,2,7]. This yields an absolute sum difference of `|10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20` **Constraints:** * `n == nums1.length` * `n == nums2.length` * 1 <= n <= 105 * 1 <= nums1[i], nums2[i] <= 105
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • minAbsoluteSumDiff

      public int minAbsoluteSumDiff(int[] nums1, int[] nums2)