java.lang.Object
g1901_2000.s1920_build_array_from_permutation.Solution

public class Solution extends Object
1920 - Build Array from Permutation\. Easy Given a **zero-based permutation** `nums` ( **0-indexed** ), build an array `ans` of the **same length** where `ans[i] = nums[nums[i]]` for each `0 <= i < nums.length` and return it. A **zero-based permutation** `nums` is an array of **distinct** integers from `0` to `nums.length - 1` ( **inclusive** ). **Example 1:** **Input:** nums = \[0,2,1,5,3,4] **Output:** \[0,1,2,4,5,3] **Explanation:** The array ans is built as follows: ans = [nums[nums\[0]], nums[nums\[1]], nums[nums\[2]], nums[nums\[3]], nums[nums\[4]], nums[nums\[5]]] = [nums\[0], nums\[2], nums\[1], nums\[5], nums\[3], nums\[4]] = \[0,1,2,4,5,3] **Example 2:** **Input:** nums = \[5,0,1,2,3,4] **Output:** \[4,5,0,1,2,3] **Explanation:** The array ans is built as follows: ans = [nums[nums\[0]], nums[nums\[1]], nums[nums\[2]], nums[nums\[3]], nums[nums\[4]], nums[nums\[5]]] = [nums\[5], nums\[0], nums\[1], nums\[2], nums\[3], nums\[4]] = \[4,5,0,1,2,3] **Constraints:** * `1 <= nums.length <= 1000` * `0 <= nums[i] < nums.length` * The elements in `nums` are **distinct**. **Follow-up:** Can you solve it without using an extra space (i.e., `O(1)` memory)?
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • buildArray

      public int[] buildArray(int[] nums)