java.lang.Object
g2001_2100.s2097_valid_arrangement_of_pairs.Solution

public class Solution extends Object
2097 - Valid Arrangement of Pairs\. Hard You are given a **0-indexed** 2D integer array `pairs` where pairs[i] = [starti, endi]. An arrangement of `pairs` is **valid** if for every index `i` where `1 <= i < pairs.length`, we have endi-1 == starti. Return _**any** valid arrangement of_ `pairs`. **Note:** The inputs will be generated such that there exists a valid arrangement of `pairs`. **Example 1:** **Input:** pairs = \[\[5,1],[4,5],[11,9],[9,4]] **Output:** [[11,9],[9,4],[4,5],[5,1]] **Explanation:** This is a valid arrangement since endi-1 always equals starti. end0 = 9 == 9 = start1 end1 = 4 == 4 = start2 end2 = 5 == 5 = start3 **Example 2:** **Input:** pairs = \[\[1,3],[3,2],[2,1]] **Output:** [[1,3],[3,2],[2,1]] **Explanation:** This is a valid arrangement since endi-1 always equals starti. end0 = 3 == 3 = start1 end1 = 2 == 2 = start2 The arrangements [[2,1],[1,3],[3,2]] and [[3,2],[2,1],[1,3]] are also valid. **Example 3:** **Input:** pairs = \[\[1,2],[1,3],[2,1]] **Output:** [[1,2],[2,1],[1,3]] **Explanation:** This is a valid arrangement since endi-1 always equals starti. end0 = 2 == 2 = start1 end1 = 1 == 1 = start2 **Constraints:** * 1 <= pairs.length <= 105 * `pairs[i].length == 2` * 0 <= starti, endi <= 109 * starti != endi * No two pairs are exactly the same. * There **exists** a valid arrangement of `pairs`.
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • validArrangement

      public int[][] validArrangement(int[][] pairs)