Class Solution
java.lang.Object
g2101_2200.s2136_earliest_possible_day_of_full_bloom.Solution
2136 - Earliest Possible Day of Full Bloom\.
Hard
You have `n` flower seeds. Every seed must be planted first before it can begin to grow, then bloom. Planting a seed takes time and so does the growth of a seed. You are given two **0-indexed** integer arrays `plantTime` and `growTime`, of length `n` each:
* `plantTime[i]` is the number of **full days** it takes you to **plant** the
ith
seed. Every day, you can work on planting exactly one seed. You **do not** have to work on planting the same seed on consecutive days, but the planting of a seed is not complete **until** you have worked `plantTime[i]` days on planting it in total.
* `growTime[i]` is the number of **full days** it takes the ith
seed to grow after being completely planted. **After** the last day of its growth, the flower **blooms** and stays bloomed forever.
From the beginning of day `0`, you can plant the seeds in **any** order.
Return _the **earliest** possible day where **all** seeds are blooming_.
**Example 1:**

**Input:** plantTime = [1,4,3], growTime = [2,3,1]
**Output:** 9
**Explanation:** The grayed out pots represent planting days, colored pots represent growing days, and the flower represents the day it blooms.
One optimal way is:
On day 0, plant the 0th seed. The seed grows for 2 full days and blooms on day 3.
On days 1, 2, 3, and 4, plant the 1st seed. The seed grows for 3 full days and blooms on day 8.
On days 5, 6, and 7, plant the 2nd seed. The seed grows for 1 full day and blooms on day 9.
Thus, on day 9, all the seeds are blooming.
**Example 2:**

**Input:** plantTime = [1,2,3,2], growTime = [2,1,2,1]
**Output:** 9
**Explanation:** The grayed out pots represent planting days, colored pots represent growing days, and the flower represents the day it blooms.
One optimal way is:
On day 1, plant the 0th seed. The seed grows for 2 full days and blooms on day 4.
On days 0 and 3, plant the 1st seed. The seed grows for 1 full day and blooms on day 5.
On days 2, 4, and 5, plant the 2nd seed. The seed grows for 2 full days and blooms on day 8.
On days 6 and 7, plant the 3rd seed. The seed grows for 1 full day and blooms on day 9.
Thus, on day 9, all the seeds are blooming.
**Example 3:**
**Input:** plantTime = [1], growTime = [1]
**Output:** 2
**Explanation:** On day 0, plant the 0th seed. The seed grows for 1 full day and blooms on day 2.
Thus, on day 2, all the seeds are blooming.
**Constraints:**
* `n == plantTime.length == growTime.length`
* 1 <= n <= 105
* 1 <= plantTime[i], growTime[i] <= 104
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
earliestFullBloom
public int earliestFullBloom(int[] plantTime, int[] growTime)
-