Class Solution
java.lang.Object
g0001_0100.s0076_minimum_window_substring.Solution
76 - Minimum Window Substring.<p>Hard</p>
<p>Given two strings <code>s</code> and <code>t</code> of lengths <code>m</code> and <code>n</code> respectively, return <em>the <strong>minimum window substring</strong> of</em> <code>s</code> <em>such that every character in</em> <code>t</code> <em>( <strong>including duplicates</strong> ) is included in the window. If there is no such substring</em>_, return the empty string_ <code>""</code><em>.</em></p>
<p>The testcases will be generated such that the answer is <strong>unique</strong>.</p>
<p>A <strong>substring</strong> is a contiguous sequence of characters within the string.</p>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> s = “ADOBECODEBANC”, t = “ABC”</p>
<p><strong>Output:</strong> “BANC”</p>
<p><strong>Explanation:</strong> The minimum window substring “BANC” includes ‘A’, ‘B’, and ‘C’ from string t.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> s = “a”, t = “a”</p>
<p><strong>Output:</strong> “a”</p>
<p><strong>Explanation:</strong> The entire string s is the minimum window.</p>
<p><strong>Example 3:</strong></p>
<p><strong>Input:</strong> s = “a”, t = “aa”</p>
<p><strong>Output:</strong> ""</p>
<p><strong>Explanation:</strong> Both ’a’s from t must be included in the window. Since the largest window of s only has one ‘a’, return empty string.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == s.length</code></li>
<li><code>n == t.length</code></li>
<li><code>1 <= m, n <= 10<sup>5</sup></code></li>
<li><code>s</code> and <code>t</code> consist of uppercase and lowercase English letters.</li>
</ul>
<p><strong>Follow up:</strong> Could you find an algorithm that runs in <code>O(m + n)</code> time?</p>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
minWindow
-