Class Solution
java.lang.Object
g0601_0700.s0674_longest_continuous_increasing_subsequence.Solution
674 - Longest Continuous Increasing Subsequence.<p>Easy</p>
<p>Given an unsorted array of integers <code>nums</code>, return <em>the length of the longest <strong>continuous increasing subsequence</strong> (i.e. subarray)</em>. The subsequence must be <strong>strictly</strong> increasing.</p>
<p>A <strong>continuous increasing subsequence</strong> is defined by two indices <code>l</code> and <code>r</code> (<code>l < r</code>) such that it is <code>[nums[l], nums[l + 1], ..., nums[r - 1], nums[r]]</code> and for each <code>l <= i < r</code>, <code>nums[i] < nums[i + 1]</code>.</p>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> nums = [1,3,5,4,7]</p>
<p><strong>Output:</strong> 3</p>
<p><strong>Explanation:</strong> The longest continuous increasing subsequence is [1,3,5] with length 3. Even though [1,3,5,7] is an increasing subsequence, it is not continuous as elements 5 and 7 are separated by element 4.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> nums = [2,2,2,2,2]</p>
<p><strong>Output:</strong> 1</p>
<p><strong>Explanation:</strong> The longest continuous increasing subsequence is [2] with length 1. Note that it must be strictly increasing.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
findLengthOfLCIS
public int findLengthOfLCIS(int[] nums)
-