Class Solution
java.lang.Object
g0701_0800.s0730_count_different_palindromic_subsequences.Solution
730 - Count Different Palindromic Subsequences.<p>Hard</p>
<p>Given a string s, return <em>the number of different non-empty palindromic subsequences in</em> <code>s</code>. Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p>A subsequence of a string is obtained by deleting zero or more characters from the string.</p>
<p>A sequence is palindromic if it is equal to the sequence reversed.</p>
<p>Two sequences <code>a<sub>1</sub>, a<sub>2</sub>, …</code> and <code>b<sub>1</sub>, b<sub>2</sub>, …</code> are different if there is some <code>i</code> for which <code>a<sub>i</sub> != b<sub>i</sub></code>.</p>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> s = “bccb”</p>
<p><strong>Output:</strong> 6</p>
<p><strong>Explanation:</strong> The 6 different non-empty palindromic subsequences are ‘b’, ‘c’, ‘bb’, ‘cc’, ‘bcb’, ‘bccb’. Note that ‘bcb’ is counted only once, even though it occurs twice.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> s = “abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba”</p>
<p><strong>Output:</strong> 104860361</p>
<p><strong>Explanation:</strong> There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10<sup>9</sup> + 7.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 1000</code></li>
<li><code>s[i]</code> is either <code>'a'</code>, <code>'b'</code>, <code>'c'</code>, or <code>'d'</code>.</li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
countPalindromicSubsequences
-