Class Solution
java.lang.Object
g0801_0900.s0879_profitable_schemes.Solution
879 - Profitable Schemes.<p>Hard</p>
<p>There is a group of <code>n</code> members, and a list of various crimes they could commit. The <code>i<sup>th</sup></code> crime generates a <code>profit[i]</code> and requires <code>group[i]</code> members to participate in it. If a member participates in one crime, that member can’t participate in another crime.</p>
<p>Let’s call a <strong>profitable scheme</strong> any subset of these crimes that generates at least <code>minProfit</code> profit, and the total number of members participating in that subset of crimes is at most <code>n</code>.</p>
<p>Return the number of schemes that can be chosen. Since the answer may be very large, <strong>return it modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> n = 5, minProfit = 3, group = [2,2], profit = [2,3]</p>
<p><strong>Output:</strong> 2</p>
<p><strong>Explanation:</strong></p>
<p>To make a profit of at least 3, the group could either commit crimes 0 and 1, or just crime 1.</p>
<p>In total, there are 2 schemes.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]</p>
<p><strong>Output:</strong> 7</p>
<p><strong>Explanation:</strong></p>
<p>To make a profit of at least 5, the group could commit any crimes, as long as they commit one.</p>
<p>There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 100</code></li>
<li><code>0 <= minProfit <= 100</code></li>
<li><code>1 <= group.length <= 100</code></li>
<li><code>1 <= group[i] <= 100</code></li>
<li><code>profit.length == group.length</code></li>
<li><code>0 <= profit[i] <= 100</code></li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionint
profitableSchemes
(int n, int minProfit, int[] group, int[] profit)
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
profitableSchemes
public int profitableSchemes(int n, int minProfit, int[] group, int[] profit)
-