Class Solution
java.lang.Object
g0901_1000.s0906_super_palindromes.Solution
906 - Super Palindromes.<p>Hard</p>
<p>Let’s say a positive integer is a <strong>super-palindrome</strong> if it is a palindrome, and it is also the square of a palindrome.</p>
<p>Given two positive integers <code>left</code> and <code>right</code> represented as strings, return <em>the number of <strong>super-palindromes</strong> integers in the inclusive range</em> <code>[left, right]</code>.</p>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> left = “4”, right = “1000”</p>
<p><strong>Output:</strong> 4</p>
<p><strong>Explanation:</strong> 4, 9, 121, and 484 are superpalindromes. Note that 676 is not a superpalindrome: 26 * 26 = 676, but 26 is not a palindrome.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> left = “1”, right = “2”</p>
<p><strong>Output:</strong> 1</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= left.length, right.length <= 18</code></li>
<li><code>left</code> and <code>right</code> consist of only digits.</li>
<li><code>left</code> and <code>right</code> cannot have leading zeros.</li>
<li><code>left</code> and <code>right</code> represent integers in the range <code>[1, 10<sup>18</sup> - 1]</code>.</li>
<li><code>left</code> is less than or equal to <code>right</code>.</li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
superpalindromesInRange
-