Class Solution
java.lang.Object
g0901_1000.s0980_unique_paths_iii.Solution
980 - Unique Paths III.<p>Hard</p>
<p>You are given an <code>m x n</code> integer array <code>grid</code> where <code>grid[i][j]</code> could be:</p>
<ul>
<li><code>1</code> representing the starting square. There is exactly one starting square.</li>
<li><code>2</code> representing the ending square. There is exactly one ending square.</li>
<li><code>0</code> representing empty squares we can walk over.</li>
<li><code>-1</code> representing obstacles that we cannot walk over.</li>
</ul>
<p>Return <em>the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once</em>.</p>
<p><strong>Example 1:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2021/08/02/lc-unique1.jpg" alt="" /></p>
<p><strong>Input:</strong> grid = [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]</p>
<p><strong>Output:</strong> 2</p>
<p><strong>Explanation:</strong> We have the following two paths:</p>
<ol>
<li>
<p>(0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)</p>
</li>
<li>
<p>(0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)</p>
</li>
</ol>
<p><strong>Example 2:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2021/08/02/lc-unique2.jpg" alt="" /></p>
<p><strong>Input:</strong> grid = [[1,0,0,0],[0,0,0,0],[0,0,0,2]]</p>
<p><strong>Output:</strong> 4</p>
<p><strong>Explanation:</strong> We have the following four paths:</p>
<ol>
<li>
<p>(0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)</p>
</li>
<li>
<p>(0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)</p>
</li>
<li>
<p>(0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)</p>
</li>
<li>
<p>(0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)</p>
</li>
</ol>
<p><strong>Example 3:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2021/08/02/lc-unique3-.jpg" alt="" /></p>
<p><strong>Input:</strong> grid = [[0,1],[2,0]]</p>
<p><strong>Output:</strong> 0</p>
<p><strong>Explanation:</strong> There is no path that walks over every empty square exactly once.</p>
<p>Note that the starting and ending square can be anywhere in the grid.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == grid.length</code></li>
<li><code>n == grid[i].length</code></li>
<li><code>1 <= m, n <= 20</code></li>
<li><code>1 <= m * n <= 20</code></li>
<li><code>-1 <= grid[i][j] <= 2</code></li>
<li>There is exactly one starting cell and one ending cell.</li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
uniquePathsIII
public int uniquePathsIII(int[][] grid)
-