Class Solution

java.lang.Object
g1101_1200.s1175_prime_arrangements.Solution

public class Solution extends Object
1175 - Prime Arrangements.<p>Easy</p> <p>Return the number of permutations of 1 to <code>n</code> so that prime numbers are at prime indices (1-indexed.)</p> <p><em>(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)</em></p> <p>Since the answer may be large, return the answer **modulo <code>10^9 + 7</code> **.</p> <p><strong>Example 1:</strong></p> <p><strong>Input:</strong> n = 5</p> <p><strong>Output:</strong> 12</p> <p><strong>Explanation:</strong> For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.</p> <p><strong>Example 2:</strong></p> <p><strong>Input:</strong> n = 100</p> <p><strong>Output:</strong> 682289015</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 100</code></li> </ul>
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • numPrimeArrangements

      public int numPrimeArrangements(int n)