Class Solution

java.lang.Object
g1201_1300.s1223_dice_roll_simulation.Solution

public class Solution extends Object
1223 - Dice Roll Simulation.<p>Hard</p> <p>A die simulator generates a random number from <code>1</code> to <code>6</code> for each roll. You introduced a constraint to the generator such that it cannot roll the number <code>i</code> more than <code>rollMax[i]</code> ( <strong>1-indexed</strong> ) consecutive times.</p> <p>Given an array of integers <code>rollMax</code> and an integer <code>n</code>, return <em>the number of distinct sequences that can be obtained with exact</em> <code>n</code> <em>rolls</em>. Since the answer may be too large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p>Two sequences are considered different if at least one element differs from each other.</p> <p><strong>Example 1:</strong></p> <p><strong>Input:</strong> n = 2, rollMax = [1,1,2,2,2,3]</p> <p><strong>Output:</strong> 34</p> <p><strong>Explanation:</strong> There will be 2 rolls of die, if there are no constraints on the die, there are 6 * 6 = 36 possible combinations. In this case, looking at rollMax array, the numbers 1 and 2 appear at most once consecutively, therefore sequences (1,1) and (2,2) cannot occur, so the final answer is 36-2 = 34.</p> <p><strong>Example 2:</strong></p> <p><strong>Input:</strong> n = 2, rollMax = [1,1,1,1,1,1]</p> <p><strong>Output:</strong> 30</p> <p><strong>Example 3:</strong></p> <p><strong>Input:</strong> n = 3, rollMax = [1,1,1,2,2,3]</p> <p><strong>Output:</strong> 181</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 5000</code></li> <li><code>rollMax.length == 6</code></li> <li><code>1 <= rollMax[i] <= 15</code></li> </ul>
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • dieSimulator

      public int dieSimulator(int n, int[] rollMax)