Class Solution
java.lang.Object
g1301_1400.s1373_maximum_sum_bst_in_binary_tree.Solution
1373 - Maximum Sum BST in Binary Tree.<p>Hard</p>
<p>Given a <strong>binary tree</strong> <code>root</code>, return <em>the maximum sum of all keys of <strong>any</strong> sub-tree which is also a Binary Search Tree (BST)</em>.</p>
<p>Assume a BST is defined as follows:</p>
<ul>
<li>The left subtree of a node contains only nodes with keys <strong>less than</strong> the node’s key.</li>
<li>The right subtree of a node contains only nodes with keys <strong>greater than</strong> the node’s key.</li>
<li>Both the left and right subtrees must also be binary search trees.</li>
</ul>
<p><strong>Example 1:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2020/01/30/sample_1_1709.png" alt="" /></p>
<p><strong>Input:</strong> root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6]</p>
<p><strong>Output:</strong> 20</p>
<p><strong>Explanation:</strong> Maximum sum in a valid Binary search tree is obtained in root node with key equal to 3.</p>
<p><strong>Example 2:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2020/01/30/sample_2_1709.png" alt="" /></p>
<p><strong>Input:</strong> root = [4,3,null,1,2]</p>
<p><strong>Output:</strong> 2</p>
<p><strong>Explanation:</strong> Maximum sum in a valid Binary search tree is obtained in a single root node with key equal to 2.</p>
<p><strong>Example 3:</strong></p>
<p><strong>Input:</strong> root = [-4,-2,-5]</p>
<p><strong>Output:</strong> 0</p>
<p><strong>Explanation:</strong> All values are negatives. Return an empty BST.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 4 * 10<sup>4</sup>]</code>.</li>
<li><code>-4 * 10<sup>4</sup> <= Node.val <= 4 * 10<sup>4</sup></code></li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
maxSumBST
-