Class Solution
java.lang.Object
g1501_1600.s1582_special_positions_in_a_binary_matrix.Solution
1582 - Special Positions in a Binary Matrix.<p>Easy</p>
<p>Given an <code>m x n</code> binary matrix <code>mat</code>, return <em>the number of special positions in</em> <code>mat</code><em>.</em></p>
<p>A position <code>(i, j)</code> is called <strong>special</strong> if <code>mat[i][j] == 1</code> and all other elements in row <code>i</code> and column <code>j</code> are <code>0</code> (rows and columns are <strong>0-indexed</strong> ).</p>
<p><strong>Example 1:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2021/12/23/special1.jpg" alt="" /></p>
<p><strong>Input:</strong> mat = [[1,0,0],[0,0,1],[1,0,0]]</p>
<p><strong>Output:</strong> 1</p>
<p><strong>Explanation:</strong> (1, 2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.</p>
<p><strong>Example 2:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2021/12/24/special-grid.jpg" alt="" /></p>
<p><strong>Input:</strong> mat = [[1,0,0],[0,1,0],[0,0,1]]</p>
<p><strong>Output:</strong> 3</p>
<p><strong>Explanation:</strong> (0, 0), (1, 1) and (2, 2) are special positions.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == mat.length</code></li>
<li><code>n == mat[i].length</code></li>
<li><code>1 <= m, n <= 100</code></li>
<li><code>mat[i][j]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
numSpecial
public int numSpecial(int[][] mat)
-