Class Solution
java.lang.Object
g1501_1600.s1584_min_cost_to_connect_all_points.Solution
1584 - Min Cost to Connect All Points.<p>Medium</p>
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D-plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p>
<p>The cost of connecting two points <code>[x<sub>i</sub>, y<sub>i</sub>]</code> and <code>[x<sub>j</sub>, y<sub>j</sub>]</code> is the <strong>manhattan distance</strong> between them: <code>|x<sub>i</sub> - x<sub>j</sub>| + |y<sub>i</sub> - y<sub>j</sub>|</code>, where <code>|val|</code> denotes the absolute value of <code>val</code>.</p>
<p>Return <em>the minimum cost to make all points connected.</em> All points are connected if there is <strong>exactly one</strong> simple path between any two points.</p>
<p><strong>Example 1:</strong></p>
<p><img src="https://assets.leetcode.com/uploads/2020/08/26/d.png" alt="" /></p>
<p><strong>Input:</strong> points = [[0,0],[2,2],[3,10],[5,2],[7,0]]</p>
<p><strong>Output:</strong> 20</p>
<p><strong>Explanation:</strong> <img src="https://assets.leetcode.com/uploads/2020/08/26/c.png" alt="" /></p>
<p>We can connect the points as shown above to get the minimum cost of 20.</p>
<p>Notice that there is a unique path between every pair of points.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> points = [[3,12],[-2,5],[-4,1]]</p>
<p><strong>Output:</strong> 18</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= points.length <= 1000</code></li>
<li><code>-10<sup>6</sup> <= x<sub>i</sub>, y<sub>i</sub> <= 10<sup>6</sup></code></li>
<li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionvoid
constructMST
(int[] parent, int[][] points, boolean[] mst, PriorityQueue<g1501_1600.s1584_min_cost_to_connect_all_points.Solution.Pair> pq, int[] dist) boolean
containsFalse
(boolean[] mst) int
getDistance
(int[] p1, int[] p2) int
minCostConnectPoints
(int[][] points)
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
minCostConnectPoints
public int minCostConnectPoints(int[][] points) -
constructMST
public void constructMST(int[] parent, int[][] points, boolean[] mst, PriorityQueue<g1501_1600.s1584_min_cost_to_connect_all_points.Solution.Pair> pq, int[] dist) -
containsFalse
public boolean containsFalse(boolean[] mst) -
getDistance
public int getDistance(int[] p1, int[] p2)
-