java.lang.Object
g1801_1900.s1856_maximum_subarray_min_product.Solution

public class Solution extends Object
1856 - Maximum Subarray Min-Product.<p>Medium</p> <p>The <strong>min-product</strong> of an array is equal to the <strong>minimum value</strong> in the array <strong>multiplied by</strong> the array&rsquo;s <strong>sum</strong>.</p> <ul> <li>For example, the array <code>[3,2,5]</code> (minimum value is <code>2</code>) has a min-product of <code>2 * (3+2+5) = 2 * 10 = 20</code>.</li> </ul> <p>Given an array of integers <code>nums</code>, return <em>the <strong>maximum min-product</strong> of any <strong>non-empty subarray</strong> of</em> <code>nums</code>. Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p>Note that the min-product should be maximized <strong>before</strong> performing the modulo operation. Testcases are generated such that the maximum min-product <strong>without</strong> modulo will fit in a <strong>64-bit signed integer</strong>.</p> <p>A <strong>subarray</strong> is a <strong>contiguous</strong> part of an array.</p> <p><strong>Example 1:</strong></p> <p><strong>Input:</strong> nums = [1,2,3,2]</p> <p><strong>Output:</strong> 14</p> <p><strong>Explanation:</strong> The maximum min-product is achieved with the subarray [2,3,2] (minimum value is 2). 2 * (2+3+2) = 2 * 7 = 14.</p> <p><strong>Example 2:</strong></p> <p><strong>Input:</strong> nums = [2,3,3,1,2]</p> <p><strong>Output:</strong> 18</p> <p><strong>Explanation:</strong> The maximum min-product is achieved with the subarray [3,3] (minimum value is 3). 3 * (3+3) = 3 * 6 = 18.</p> <p><strong>Example 3:</strong></p> <p><strong>Input:</strong> nums = [3,1,5,6,4,2]</p> <p><strong>Output:</strong> 60</p> <p><strong>Explanation:</strong> The maximum min-product is achieved with the subarray [5,6,4] (minimum value is 4). 4 * (5+6+4) = 4 * 15 = 60.</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length <= 10<sup>5</sup></code></li> <li><code>1 <= nums[i] <= 10<sup>7</sup></code></li> </ul>
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • maxSumMinProduct

      public int maxSumMinProduct(int[] nums)