Class Solution
java.lang.Object
g2401_2500.s2484_count_palindromic_subsequences.Solution
2484 - Count Palindromic Subsequences.<p>Hard</p>
<p>Given a string of digits <code>s</code>, return <em>the number of <strong>palindromic subsequences</strong> of</em> <code>s</code> <em>having length</em> <code>5</code>. Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p><strong>Note:</strong></p>
<ul>
<li>A string is <strong>palindromic</strong> if it reads the same forward and backward.</li>
<li>A <strong>subsequence</strong> is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters.</li>
</ul>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> s = “103301”</p>
<p><strong>Output:</strong> 2</p>
<p><strong>Explanation:</strong> There are 6 possible subsequences of length 5: “10330”,“10331”,“10301”,“10301”,“13301”,“03301”. Two of them (both equal to “10301”) are palindromic.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> s = “0000000”</p>
<p><strong>Output:</strong> 21</p>
<p><strong>Explanation:</strong> All 21 subsequences are “00000”, which is palindromic.</p>
<p><strong>Example 3:</strong></p>
<p><strong>Input:</strong> s = “9999900000”</p>
<p><strong>Output:</strong> 2</p>
<p><strong>Explanation:</strong> The only two palindromic subsequences are “99999” and “00000”.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 10<sup>4</sup></code></li>
<li><code>s</code> consists of digits.</li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
countPalindromes
-