java.lang.Object
g2501_2600.s2549_count_distinct_numbers_on_board.Solution

public class Solution extends Object
2549 - Count Distinct Numbers on Board.<p>Easy</p> <p>You are given a positive integer <code>n</code>, that is initially placed on a board. Every day, for <code>10<sup>9</sup></code> days, you perform the following procedure:</p> <ul> <li>For each number <code>x</code> present on the board, find all numbers <code>1 <= i <= n</code> such that <code>x % i == 1</code>.</li> <li>Then, place those numbers on the board.</li> </ul> <p>Return <em>the number of <strong>distinct</strong> integers present on the board after</em> <code>10<sup>9</sup></code> <em>days have elapsed</em>.</p> <p><strong>Note:</strong></p> <ul> <li>Once a number is placed on the board, it will remain on it until the end.</li> <li><code>%</code> stands for the modulo operation. For example, <code>14 % 3</code> is <code>2</code>.</li> </ul> <p><strong>Example 1:</strong></p> <p><strong>Input:</strong> n = 5</p> <p><strong>Output:</strong> 4</p> <p><strong>Explanation:</strong> Initially, 5 is present on the board.</p> <p>The next day, 2 and 4 will be added since 5 % 2 == 1 and 5 % 4 == 1.</p> <p>After that day, 3 will be added to the board because 4 % 3 == 1.</p> <p>At the end of a billion days, the distinct numbers on the board will be 2, 3, 4, and 5.</p> <p><strong>Example 2:</strong></p> <p><strong>Input:</strong> n = 3</p> <p><strong>Output:</strong> 2</p> <p><strong>Explanation:</strong> Since 3 % 2 == 1, 2 will be added to the board. After a billion days, the only two distinct numbers on the board are 2 and 3.</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 100</code></li> </ul>
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • distinctIntegers

      public int distinctIntegers(int n)