Class Solution
java.lang.Object
g2501_2600.s2552_count_increasing_quadruplets.Solution
2552 - Count Increasing Quadruplets.<p>Hard</p>
<p>Given a <strong>0-indexed</strong> integer array <code>nums</code> of size <code>n</code> containing all numbers from <code>1</code> to <code>n</code>, return <em>the number of increasing quadruplets</em>.</p>
<p>A quadruplet <code>(i, j, k, l)</code> is increasing if:</p>
<ul>
<li><code>0 <= i < j < k < l < n</code>, and</li>
<li><code>nums[i] < nums[k] < nums[j] < nums[l]</code>.</li>
</ul>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> nums = [1,3,2,4,5]</p>
<p><strong>Output:</strong> 2</p>
<p><strong>Explanation:</strong></p>
<ul>
<li>
<p>When i = 0, j = 1, k = 2, and l = 3, nums[i] < nums[k] < nums[j] < nums[l].</p>
</li>
<li>
<p>When i = 0, j = 1, k = 2, and l = 4, nums[i] < nums[k] < nums[j] < nums[l]. There are no other quadruplets, so we return 2.</p>
</li>
</ul>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> nums = [1,2,3,4]</p>
<p><strong>Output:</strong> 0</p>
<p><strong>Explanation:</strong></p>
<p>There exists only one quadruplet with i = 0, j = 1, k = 2, l = 3, but since nums[j] < nums[k], we return 0.</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>4 <= nums.length <= 4000</code></li>
<li><code>1 <= nums[i] <= nums.length</code></li>
<li>All the integers of <code>nums</code> are <strong>unique</strong>. <code>nums</code> is a permutation.</li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
countQuadruplets
public long countQuadruplets(int[] nums)
-