java.lang.Object
g2701_2800.s2778_sum_of_squares_of_special_elements.Solution

public class Solution extends Object
2778 - Sum of Squares of Special Elements.<p>Easy</p> <p>You are given a <strong>1-indexed</strong> integer array <code>nums</code> of length <code>n</code>.</p> <p>An element <code>nums[i]</code> of <code>nums</code> is called <strong>special</strong> if <code>i</code> divides <code>n</code>, i.e. <code>n % i == 0</code>.</p> <p>Return <em>the <strong>sum of the squares</strong> of all <strong>special</strong> elements of</em> <code>nums</code>.</p> <p><strong>Example 1:</strong></p> <p><strong>Input:</strong> nums = [1,2,3,4]</p> <p><strong>Output:</strong> 21</p> <p><strong>Explanation:</strong></p> <p>There are exactly 3 special elements in nums: nums[1] since 1 divides 4, nums[2] since 2 divides 4, and nums[4] since 4 divides 4.</p> <p>Hence, the sum of the squares of all special elements of nums is nums[1] * nums[1] + nums[2] * nums[2] + nums[4] * nums[4] = 1 * 1 + 2 * 2 + 4 * 4 = 21.</p> <p><strong>Example 2:</strong></p> <p><strong>Input:</strong> nums = [2,7,1,19,18,3]</p> <p><strong>Output:</strong> 63</p> <p><strong>Explanation:</strong></p> <p>There are exactly 4 special elements in nums: nums[1] since 1 divides 6, nums[2] since 2 divides 6, nums[3] since 3 divides 6, and nums[6] since 6 divides 6.</p> <p>Hence, the sum of the squares of all special elements of nums is nums[1] * nums[1] + nums[2] * nums[2] + nums[3] * nums[3] + nums[6] * nums[6] = 2 * 2 + 7 * 7 + 1 * 1 + 3 * 3 = 63.</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length == n <= 50</code></li> <li><code>1 <= nums[i] <= 50</code></li> </ul>
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • sumOfSquares

      public int sumOfSquares(int[] nums)