Class Solution
Medium
There is a 3 lane road of length n
that consists of n + 1
points labeled from 0
to n
. A frog starts at point 0
in the second lane and wants to jump to point n
. However, there could be obstacles along the way.
You are given an array obstacles
of length n + 1
where each obstacles[i]
( ranging from 0 to 3 ) describes an obstacle on the lane obstacles[i]
at point i
. If obstacles[i] == 0
, there are no obstacles at point i
. There will be at most one obstacle in the 3 lanes at each point.
- For example, if
obstacles[2] == 1
, then there is an obstacle on lane 1 at point 2.
The frog can only travel from point i
to point i + 1
on the same lane if there is not an obstacle on the lane at point i + 1
. To avoid obstacles, the frog can also perform a side jump to jump to another lane (even if they are not adjacent) at the same point if there is no obstacle on the new lane.
- For example, the frog can jump from lane 3 at point 3 to lane 1 at point 3.
Return the minimum number of side jumps the frog needs to reach any lane at point n starting from lane 2
at point 0.
Note: There will be no obstacles on points 0
and n
.
Example 1:
Input: obstacles = [0,1,2,3,0]
Output: 2
Explanation: The optimal solution is shown by the arrows above. There are 2 side jumps (red arrows). Note that the frog can jump over obstacles only when making side jumps (as shown at point 2).
Example 2:
Input: obstacles = [0,1,1,3,3,0]
Output: 0
Explanation: There are no obstacles on lane 2. No side jumps are required.
Example 3:
Input: obstacles = [0,2,1,0,3,0]
Output: 2
Explanation: The optimal solution is shown by the arrows above. There are 2 side jumps.
Constraints:
obstacles.length == n + 1
1 <= n <= 5 * 105
0 <= obstacles[i] <= 3
obstacles[0] == obstacles[n] == 0
-
Constructor Summary
Constructors -
Method Summary
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
minSideJumps
public int minSideJumps(int[] obstacles)
-