java.lang.Object
g1701_1800.s1761_minimum_degree_of_a_connected_trio_in_a_graph.Solution

public class Solution extends java.lang.Object
1761 - Minimum Degree of a Connected Trio in a Graph.

Hard

You are given an undirected graph. You are given an integer n which is the number of nodes in the graph and an array edges, where each edges[i] = [ui, vi] indicates that there is an undirected edge between ui and vi.

A connected trio is a set of three nodes where there is an edge between every pair of them.

The degree of a connected trio is the number of edges where one endpoint is in the trio, and the other is not.

Return the minimum degree of a connected trio in the graph, or -1 if the graph has no connected trios.

Example 1:

Input: n = 6, edges = [[1,2],[1,3],[3,2],[4,1],[5,2],[3,6]]

Output: 3

Explanation: There is exactly one trio, which is [1,2,3]. The edges that form its degree are bolded in the figure above.

Example 2:

Input: n = 7, edges = [[1,3],[4,1],[4,3],[2,5],[5,6],[6,7],[7,5],[2,6]]

Output: 0

Explanation: There are exactly three trios:

  1. [1,4,3] with degree 0.

  2. [2,5,6] with degree 2.

  3. [5,6,7] with degree 2.

Constraints:

  • 2 <= n <= 400
  • edges[i].length == 2
  • 1 <= edges.length <= n * (n-1) / 2
  • 1 <= ui, vi <= n
  • ui != vi
  • There are no repeated edges.
  • Constructor Summary

    Constructors
    Constructor
    Description
     
  • Method Summary

    Modifier and Type
    Method
    Description
    int
    minTrioDegree(int n, int[][] edges)
     

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • minTrioDegree

      public int minTrioDegree(int n, int[][] edges)