java.lang.Object
g1801_1900.s1889_minimum_space_wasted_from_packaging.Solution

public class Solution extends java.lang.Object
1889 - Minimum Space Wasted From Packaging.

Hard

You have n packages that you are trying to place in boxes, one package in each box. There are m suppliers that each produce boxes of different sizes (with infinite supply). A package can be placed in a box if the size of the package is less than or equal to the size of the box.

The package sizes are given as an integer array packages, where packages[i] is the size of the ith package. The suppliers are given as a 2D integer array boxes, where boxes[j] is an array of box sizes that the jth supplier produces.

You want to choose a single supplier and use boxes from them such that the total wasted space is minimized. For each package in a box, we define the space wasted to be size of the box - size of the package. The total wasted space is the sum of the space wasted in all the boxes.

  • For example, if you have to fit packages with sizes [2,3,5] and the supplier offers boxes of sizes [4,8], you can fit the packages of size-2 and size-3 into two boxes of size-4 and the package with size-5 into a box of size-8. This would result in a waste of (4-2) + (4-3) + (8-5) = 6.

Return the minimum total wasted space by choosing the box supplier optimally , or -1 if it is impossible to fit all the packages inside boxes. Since the answer may be large , return it modulo 109 + 7.

Example 1:

Input: packages = [2,3,5], boxes = [[4,8],[2,8]]

Output: 6

Explanation: It is optimal to choose the first supplier, using two size-4 boxes and one size-8 box.

The total waste is (4-2) + (4-3) + (8-5) = 6.

Example 2:

Input: packages = [2,3,5], boxes = [[1,4],[2,3],[3,4]]

Output: -1

Explanation: There is no box that the package of size 5 can fit in.

Example 3:

Input: packages = [3,5,8,10,11,12], boxes = [[12],[11,9],[10,5,14]]

Output: 9

Explanation: It is optimal to choose the third supplier, using two size-5 boxes, two size-10 boxes, and two size-14 boxes.

The total waste is (5-3) + (5-5) + (10-8) + (10-10) + (14-11) + (14-12) = 9.

Constraints:

  • n == packages.length
  • m == boxes.length
  • 1 <= n <= 105
  • 1 <= m <= 105
  • 1 <= packages[i] <= 105
  • 1 <= boxes[j].length <= 105
  • 1 <= boxes[j][k] <= 105
  • sum(boxes[j].length) <= 105
  • The elements in boxes[j] are distinct.
  • Constructor Summary

    Constructors
    Constructor
    Description
     
  • Method Summary

    Modifier and Type
    Method
    Description
    int
    minWastedSpace(int[] packages, int[][] boxes)
     

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • minWastedSpace

      public int minWastedSpace(int[] packages, int[][] boxes)