Class Solution
Medium
You are given a 0-indexed array nums
that consists of n
distinct positive integers. Apply m
operations to this array, where in the ith
operation you replace the number operations[i][0]
with operations[i][1]
.
It is guaranteed that in the ith
operation:
operations[i][0]
exists innums
.operations[i][1]
does not exist innums
.
Return the array obtained after applying all the operations.
Example 1:
Input: nums = [1,2,4,6], operations = [[1,3],[4,7],[6,1]]
Output: [3,2,7,1]
Explanation:
We perform the following operations on nums:
-
Replace the number 1 with 3. nums becomes [3 ,2,4,6].
-
Replace the number 4 with 7. nums becomes [3,2, 7 ,6].
-
Replace the number 6 with 1. nums becomes [3,2,7, 1 ].
We return the final array [3,2,7,1].
Example 2:
Input: nums = [1,2], operations = [[1,3],[2,1],[3,2]]
Output: [2,1]
Explanation:
We perform the following operations to nums:
-
Replace the number 1 with 3. nums becomes [3 ,2].
-
Replace the number 2 with 1. nums becomes [3, 1 ].
-
Replace the number 3 with 2. nums becomes [2 ,1].
We return the array [2,1].
Constraints:
n == nums.length
m == operations.length
1 <= n, m <= 105
- All the values of
nums
are distinct. operations[i].length == 2
1 <= nums[i], operations[i][0], operations[i][1] <= 106
operations[i][0]
will exist innums
when applying theith
operation.operations[i][1]
will not exist innums
when applying theith
operation.
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
arrayChange
public int[] arrayChange(int[] nums, int[][] operations)
-