Class Solution

  • All Implemented Interfaces:

    
    public final class Solution
    
                        

    1584 - Min Cost to Connect All Points\.

    Medium

    You are given an array points representing integer coordinates of some points on a 2D-plane, where <code>pointsi = x<sub>i</sub>, y<sub>i</sub></code>.

    The cost of connecting two points <code>x<sub>i</sub>, y<sub>i</sub></code> and <code>x<sub>j</sub>, y<sub>j</sub></code> is the manhattan distance between them: <code>|x<sub>i</sub> - x<sub>j</sub>| + |y<sub>i</sub> - y<sub>j</sub>|</code>, where |val| denotes the absolute value of val.

    Return the minimum cost to make all points connected. All points are connected if there is exactly one simple path between any two points.

    Example 1:

    Input: points = \[\[0,0],2,2,3,10,5,2,7,0]

    Output: 20

    Explanation:

    We can connect the points as shown above to get the minimum cost of 20.

    Notice that there is a unique path between every pair of points.

    Example 2:

    Input: points = \[\[3,12],-2,5,-4,1]

    Output: 18

    Constraints:

    • 1 &lt;= points.length &lt;= 1000

    • <code>-10<sup>6</sup><= x<sub>i</sub>, y<sub>i</sub><= 10<sup>6</sup></code>

    • All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.

    • Nested Class Summary

      Nested Classes 
      Modifier and Type Class Description
      public final class Solution.Pair
    • Field Summary

      Fields 
      Modifier and Type Field Description
    • Constructor Summary

      Constructors 
      Constructor Description
      Solution()
    • Enum Constant Summary

      Enum Constants 
      Enum Constant Description
    • Method Summary

      Modifier and Type Method Description
      final Integer minCostConnectPoints(Array<IntArray> points)
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait