Class Solution
-
- All Implemented Interfaces:
public final class Solution
497 - Random Point in Non-overlapping Rectangles\.
Medium
You are given an array of non-overlapping axis-aligned rectangles
rects
where <code>rectsi = a<sub>i</sub>, b<sub>i</sub>, x<sub>i</sub>, y<sub>i</sub></code> indicates that <code>(a<sub>i</sub>, b<sub>i</sub>)</code> is the bottom-left corner point of the <code>i<sup>th</sup></code> rectangle and <code>(x<sub>i</sub>, y<sub>i</sub>)</code> is the top-right corner point of the <code>i<sup>th</sup></code> rectangle. Design an algorithm to pick a random integer point inside the space covered by one of the given rectangles. A point on the perimeter of a rectangle is included in the space covered by the rectangle.Any integer point inside the space covered by one of the given rectangles should be equally likely to be returned.
Note that an integer point is a point that has integer coordinates.
Implement the
Solution
class:Solution(int[][] rects)
Initializes the object with the given rectanglesrects
.int[] pick()
Returns a random integer point[u, v]
inside the space covered by one of the given rectangles.
Example 1:
Input "Solution", "pick", "pick", "pick", "pick", "pick" [[[-2, -2, 1, 1, 2, 2, 4, 6]], [], [], [], [], []]
Output: [null, 1, -2, 1, -1, -1, -2, -2, -2, 0, 0]
Explanation:
Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]); solution.pick(); // return [1, -2] solution.pick(); // return [1, -1] solution.pick(); // return [-1, -2] solution.pick(); // return [-2, -2] solution.pick(); // return [0, 0]
Constraints:
1 <= rects.length <= 100
rects[i].length == 4
<code>-10<sup>9</sup><= a<sub>i</sub>< x<sub>i</sub><= 10<sup>9</sup></code>
<code>-10<sup>9</sup><= b<sub>i</sub>< y<sub>i</sub><= 10<sup>9</sup></code>
<code>x<sub>i</sub> - a<sub>i</sub><= 2000</code>
<code>y<sub>i</sub> - b<sub>i</sub><= 2000</code>
All the rectangles do not overlap.
At most <code>10<sup>4</sup></code> calls will be made to
pick
.