Class Solution
-
- All Implemented Interfaces:
public final class Solution
2542 - Maximum Subsequence Score\.
Medium
You are given two 0-indexed integer arrays
nums1
andnums2
of equal lengthn
and a positive integerk
. You must choose a subsequence of indices fromnums1
of lengthk
.For chosen indices <code>i<sub>0</sub></code>, <code>i<sub>1</sub></code>, ..., <code>i<sub>k - 1</sub></code>, your score is defined as:
The sum of the selected elements from
nums1
multiplied with the minimum of the selected elements fromnums2
.It can defined simply as: <code>(nums1i<sub>0</sub> + nums1i<sub>1</sub> +...+ nums1i<sub>k - 1</sub>) * min(nums2i<sub>0</sub> , nums2i<sub>1</sub>, ... ,nums2i<sub>k - 1</sub>)</code>.
Return the maximum possible score.
A subsequence of indices of an array is a set that can be derived from the set
{0, 1, ..., n-1}
by deleting some or no elements.Example 1:
Input: nums1 = 1,3,3,2, nums2 = 2,1,3,4, k = 3
Output: 12
Explanation:
The four possible subsequence scores are:
We choose the indices 0, 1, and 2 with score = (1+3+3) \* min(2,1,3) = 7.
We choose the indices 0, 1, and 3 with score = (1+3+2) \* min(2,1,4) = 6.
We choose the indices 0, 2, and 3 with score = (1+3+2) \* min(2,3,4) = 12.
We choose the indices 1, 2, and 3 with score = (3+3+2) \* min(1,3,4) = 8.
Therefore, we return the max score, which is 12.
Example 2:
Input: nums1 = 4,2,3,1,1, nums2 = 7,5,10,9,6, k = 1
Output: 30
Explanation: Choosing index 2 is optimal: nums12 \* nums22 = 3 \* 10 = 30 is the maximum possible score.
Constraints:
n == nums1.length == nums2.length
<code>1 <= n <= 10<sup>5</sup></code>
<code>0 <= nums1i, nums2j<= 10<sup>5</sup></code>
1 <= k <= n
-
-
Constructor Summary
Constructors Constructor Description Solution()
-