Class Solution
-
- All Implemented Interfaces:
public final class Solution
2653 - Sliding Subarray Beauty\.
Medium
Given an integer array
nums
containingn
integers, find the beauty of each subarray of sizek
.The beauty of a subarray is the <code>x<sup>th</sup></code> smallest integer in the subarray if it is negative , or
0
if there are fewer thanx
negative integers.Return an integer array containing
n - k + 1
integers, which denote the beauty of the subarrays in order from the first index in the array.A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = 1,-1,-3,-2,3, k = 3, x = 2
Output: -1,-2,-2
Explanation: There are 3 subarrays with size k = 3.
The first subarray is
[1, -1, -3]
and the 2<sup>nd</sup> smallest negative integer is -1.The second subarray is
[-1, -3, -2]
and the 2<sup>nd</sup> smallest negative integer is -2.The third subarray is
[-3, -2, 3]
and the 2<sup>nd</sup> smallest negative integer is -2.Example 2:
Input: nums = -1,-2,-3,-4,-5, k = 2, x = 2
Output: -1,-2,-3,-4
Explanation: There are 4 subarrays with size k = 2.
For
[-1, -2]
, the 2<sup>nd</sup> smallest negative integer is -1.For
[-2, -3]
, the 2<sup>nd</sup> smallest negative integer is -2.For
[-3, -4]
, the 2<sup>nd</sup> smallest negative integer is -3.For
[-4, -5]
, the 2<sup>nd</sup> smallest negative integer is -4.Example 3:
Input: nums = -3,1,2,-3,0,-3, k = 2, x = 1
Output: -3,0,-3,-3,-3
Explanation: There are 5 subarrays with size k = 2**.**
For
[-3, 1]
, the 1<sup>st</sup> smallest negative integer is -3.For
[1, 2]
, there is no negative integer so the beauty is 0.For
[2, -3]
, the 1<sup>st</sup> smallest negative integer is -3.For
[-3, 0]
, the 1<sup>st</sup> smallest negative integer is -3.For
[0, -3]
, the 1<sup>st</sup> smallest negative integer is -3.Constraints:
n == nums.length
<code>1 <= n <= 10<sup>5</sup></code>
1 <= k <= n
1 <= x <= k
-50 <= nums[i] <= 50