Class Solution
-
- All Implemented Interfaces:
public final class Solution
1584 - Min Cost to Connect All Points.
Medium
You are given an array
points
representing integer coordinates of some points on a 2D-plane, where <code>pointsi = x<sub>i</sub>, y<sub>i</sub></code>.The cost of connecting two points <code>x<sub>i</sub>, y<sub>i</sub></code> and <code>x<sub>j</sub>, y<sub>j</sub></code> is the manhattan distance between them: <code>|x<sub>i</sub> - x<sub>j</sub>| + |y<sub>i</sub> - y<sub>j</sub>|</code>, where
|val|
denotes the absolute value ofval
.Return the minimum cost to make all points connected. All points are connected if there is exactly one simple path between any two points.
Example 1:
Input: points = \[\[0,0],2,2,3,10,5,2,7,0]
Output: 20
Explanation:
We can connect the points as shown above to get the minimum cost of 20.
Notice that there is a unique path between every pair of points.
Example 2:
Input: points = \[\[3,12],-2,5,-4,1]
Output: 18
Constraints:
1 <= points.length <= 1000
<code>-10<sup>6</sup><= x<sub>i</sub>, y<sub>i</sub><= 10<sup>6</sup></code>
All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description public final class
Solution.Pair
-
Constructor Summary
Constructors Constructor Description Solution()
-
Method Summary
Modifier and Type Method Description final Integer
minCostConnectPoints(Array<IntArray> points)
-
-
Method Detail
-
minCostConnectPoints
final Integer minCostConnectPoints(Array<IntArray> points)
-
-
-
-