Class Solution

  • All Implemented Interfaces:

    
    public final class Solution
    
                        

    3533 - Concatenated Divisibility.

    Hard

    You are given an array of positive integers nums and a positive integer k.

    A permutation of nums is said to form a divisible concatenation if, when you concatenate the decimal representations of the numbers in the order specified by the permutation, the resulting number is divisible by k.

    Return the lexicographically smallest permutation (when considered as a list of integers) that forms a divisible concatenation. If no such permutation exists, return an empty list.

    Example 1:

    Input: nums = 3,12,45, k = 5

    Output: 3,12,45

    Explanation:

    The lexicographically smallest permutation that forms a divisible concatenation is [3,12,45].

    Example 2:

    Input: nums = 10,5, k = 10

    Output: 5,10

    Explanation:

    The lexicographically smallest permutation that forms a divisible concatenation is [5,10].

    Example 3:

    Input: nums = 1,2,3, k = 5

    Output: []

    Explanation:

    Since no permutation of nums forms a valid divisible concatenation, return an empty list.

    Constraints:

    • 1 <= nums.length <= 13

    • <code>1 <= numsi<= 10<sup>5</sup></code>

    • 1 &lt;= k &lt;= 100

    • Nested Class Summary

      Nested Classes 
      Modifier and Type Class Description
    • Field Summary

      Fields 
      Modifier and Type Field Description
    • Constructor Summary

      Constructors 
      Constructor Description
      Solution()
    • Enum Constant Summary

      Enum Constants 
      Enum Constant Description
    • Method Summary

      Modifier and Type Method Description
      final IntArray concatenatedDivisibility(IntArray nums, Integer k)
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait